留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes

ABOUL-ENEIN Ateyya A. AWADALLAH Ahmed E. EL-DESOUKI Doaa S. ABOUL-GHEIT Noha A.K.

ABOUL-ENEINAteyya A., AWADALLAHAhmed E., EL-DESOUKIDoaa S., ABOUL-GHEITNoha A.K.. 沸石催化甘蔗渣裂解制备多壁碳纳米管[J]. 燃料化学学报(中英文), 2021, 49(10): 1421-1434. doi: 10.1016/S1872-5813(21)60127-5
引用本文: ABOUL-ENEINAteyya A., AWADALLAHAhmed E., EL-DESOUKIDoaa S., ABOUL-GHEITNoha A.K.. 沸石催化甘蔗渣裂解制备多壁碳纳米管[J]. 燃料化学学报(中英文), 2021, 49(10): 1421-1434. doi: 10.1016/S1872-5813(21)60127-5
ABOUL-ENEIN Ateyya A., AWADALLAH Ahmed E., EL-DESOUKI Doaa S., ABOUL-GHEIT Noha A.K.. Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1421-1434. doi: 10.1016/S1872-5813(21)60127-5
Citation: ABOUL-ENEIN Ateyya A., AWADALLAH Ahmed E., EL-DESOUKI Doaa S., ABOUL-GHEIT Noha A.K.. Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1421-1434. doi: 10.1016/S1872-5813(21)60127-5

沸石催化甘蔗渣裂解制备多壁碳纳米管

doi: 10.1016/S1872-5813(21)60127-5
详细信息
  • 中图分类号: O643.3

Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes

Funds: The project was supported by the Science and Technology Development Fund (STDF) in Egypt (34830).
More Information
  • 摘要: 通过催化热解农业废弃物甘蔗渣 (SCB),采用两步工艺生产具有显著应用价值的碳纳米管 (CNTs)。主要研究沸石催化剂 (HZSM-5、HMOR和HY)、热解温度 (450−700 ℃)和SCB/ZSM-5的比例 (3−12)对SCB催化热解的影响,确定最佳工艺参数。随后,将第一步产生富含碳的热解产物用于第二步由Co-Mo/MgO催化生长CNTs。通过简单的两步工艺催化热解SCB生产CNTs。SCB的催化热解在半间歇式反应器 (外径 = 4 cm,长度 = 90 cm)中进行,CNTs的生长在水平反应器 (外径 = 2.5 cm,长度 = 100 cm)中进行。两个反应器通过玻璃管 (直径0.6 cm,长度12 cm)连接并将热解产物从反应器I转移到反应器II。在半间歇式反应器中放入经过预处理的SCB和沸石催化剂,并以20 ℃/min加热到反应所需温度。随后,将0.5 g Co-Mo/MgO加入到水平反应器中作为CNTs的生长催化剂。在一个典型的实验中,将2 g沸石催化剂、24 g SCB放入半间歇式反应器,研究了不同种类沸石催化剂在500 ℃温度条件下对SCB热解的影响。接着,使用HZSM-5研究了不同温度 (450−700 ℃)对SCB热解的影响。最后,研究了不同SCB/ZSM-5投料比例 (SCB/ZSM-5 = 3、6、9、12)对SCB热解的影响。此外,水平反应器中的CNTs生长温度恒定为700 ℃。通过XRD、TPR和TPD进行催化剂表征。XRD谱图证实了催化剂存在MgO和Co3O4,以及以小尺寸颗粒形式存在的CoMoO4和MgMoO4。使用XRD数据根据Scherrer方程计算45% Co-5% Mo/MgO催化剂的平均晶粒尺寸为25.8 nm。TPR分析表明,Co-Mo/MgO催化剂是由未反应的Co3O4以及混合氧化物组成。使用XRD数据,计算得到HZSM-5、HMOR和HY的平均晶粒尺寸分别为43、41和51 nm。NH3-TPD分析表明沸石催化剂存在大量的酸性位点。催化热解SCB结果表明,由HY和HZSM-5催化剂在500 ℃得到的挥发性产品(生物油和气体)的总收率值分别为34.4%和32.8 %,而使用HMOR产生的这些挥发性产品的收率值最低 (28.8%)。用HZSM-5催化热解SCB获得了最高的炭产量 (23.1%)。然而,使用HMOR和HY热解催化剂产生的炭产量值较低,分别为15.8%和9.8%。使用TEM表征通过两步法生产的碳纳米管,并且测量了CNTs的外径。数据显示,用HZSM-5进行SCB热解产生了直径分布范围较宽的CNTs (10−56 nm),而用HMOR和HY热解催化剂则分别获得了直径较窄的CNTs (13−44 nm,12−28 nm)。拉曼光谱分析表明,使用HZSM-5作为SCB热解的催化剂可以生产最优的CNTs。研究了不同热解温度对CNTs产量的影响。结果显示,将热解温度从450 ℃提高到500 ℃,炭产率值从6.7%达到最佳值23.1%,接着增加温度至700 ℃,炭产量下降至16.7%。随后对不同温度下催化热解形成的炭产品进行TEM表征,结果显示,随着温度的升高炭产品中CNTs的比例下降,CNTs的直径范围变窄。拉曼光谱分析结果表明,在500和700 ℃形成的CNMs具有最少的缺陷。研究了投料比例对炭产品产量的影响,结果表明,SCB/ZSM-5的比例从3提高到12,生物油和气体的总产量从36.4%下降到32.8%,而生物炭的产量分别从63.6%增加到67.2%。根据催化剂的质量计算得到炭产量的最佳值是使用SCB/ZSM-5比例为6。使用TEM表征不同投料比例生产的炭产品,分析表征结果可得SCB/ZSM-5的比例为6,是形成具有良好质量的致密CNTs的最佳选择。并且不同投料比例的拉曼光谱显示,SCB/ZSM-5比例为6可以生产最优的CNTs。沸石类型 (HZSM-5、HMOR和HY)、热解温度 (450−700 ℃)和SCB/ZSM-5比例 (3−12)影响CNTs和热解产物 (气体、生物油和生物炭)的产量。实验结果表明,获得最高CNTs产量的条件为:热解温度为500 ℃、SCB/ZSM-5比例为6;获得最高生物油和气体总产量 (40%)的条件为:热解温度为700 ℃、SCB/ZSM-5比例为12。TEM分析表明,使用HZSM-5催化剂在热解温度450 ℃只生成竹节状碳纳米管 (BCNTs),而CNTs和碳纳米洋葱 (CNO)是在较高温度热解温度 (500−700 ℃)下产生的。使用SCB/ZSM-5的比例为6时,生成CNTs的直径分布范围最大 (7−76 nm)。拉曼光谱分析表明,使用SCB/ZSM-5的比例为6时,形成的CNTs最优。该研究显示,在半间歇式反应器中催化热解SCB是生产CNTs的有效技术,通过对工艺和反应器的优化可以达到更好的效果。
  • FIG. 962.  FIG. 962.

    FIG. 962. 

    Figure  1  Schematic diagram of the system used to convert SCB to CNTs

    Figure  2  XRD pattern (a) and H2-TPR profile (b) of the fresh Co-Mo/MgO catalyst, and XRD patterns (c) and NH3-TPD profiles (d) of different zeolite catalysts profiles

    Figure  3  (a) Yields of pyrolysis products and (b) yield of deposited carbon obtained by SCB pyrolysis using various acidic zeolite catalysts

    Figure  4  TEM images and outer diameter distribution histograms of CNMs obtained by SCB pyrolysis using different zeolites

    (a), (b): HZSM-5, (c), (d): HMOR, and (e), (f): HY

    Figure  5  Schematic diagram for CNMs obtained over the Co-Mo/MgO catalyst via catalytic pyrolysis of SCB using various zeolite catalysts

    Figure  6  Raman spectra of CNMs obtained by catalytic pyrolysis of SCB using different zeolites

    Figure  7  (a) Yields of pyrolysis products and (b) yield of deposited carbon obtained by catalytic pyrolysis of SCB at different temperatures using the SCB/ZSM-5 ratio of 12

    Figure  8  TEM images and outer diameter distribution histograms of CNMs synthesized by catalytic pyrolysis of SCB at different temperatures: (a), (b) 450 °C, (c), (d) 500 °C, (e), (f) 550 °C, (g), (h) 600 °C, and (i), (j) 700 °C

    Figure  9  Raman spectra of CNMs obtained by catalytic pyrolysis of SCB at different temperatures

    Figure  10  (a) Yields of pyrolysis products and (b) yield of deposited carbon obtained using various SCB/HZSM-5 ratios

    Figure  11  TEM images and outer diameter distribution histograms of CNTs obtained at different SCB/ZSM-5 ratios of: (a), (b) 3, (c), (d) 6, (e), (f) 9, and (g), (h) 12

    Figure  12  Raman spectra of CNTs obtained at different SCB/HZSM-5 ratios

  • [1] RAJA S, MATTOSO L H C, MOREIRA F K V. Biomass-Derived Nanomaterials. Nanostructured Materials for Energy Related Applications[M]. Cham: Springer Nature Switzerland AG, 2019: 243−270.
    [2] TITIRICI M-M, WHITE R J, BRUN N, BUDARIN V L, SU D S, DEL MONTE F, CLARK J H, MACLACHLAN M J. Sustainable carbon materials[J]. Chem Soc Rev,2015,44:250−290. doi: 10.1039/C4CS00232F
    [3] SHEN D, JIN W, HU J, XIAO R, LUO K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions[J]. Renewable Suseamable Energy Rev,2015,51(6):761−774.
    [4] PATRA T K, SHETH P N. Biomass gasification coupled with producer gas cleaning, bottling and HTS catalyst treatment for H2-rich gas production[J]. Int J Hydrogen Energy,2019,44:11602−11616. doi: 10.1016/j.ijhydene.2019.03.107
    [5] BASU P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory[M]. Amsterdam: Elsevier, 2018.
    [6] REZAEI P S, SHAFAGHAT H, DAUD W M A W. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review [J]. Appl Catal A: Gen, 2014, 469: 491−511.
    [7] CHA J S, PARK S H, JUNG S C, RYU C, JEON J K, SHIN M C, PARK Y K. Production and utilization of biochar: A review[J]. J Ind Eng Chem,2016,40:1−15.
    [8] QIAN K, KUMAR A, ZHANG H, BELLMER D, HUHNKE R. Recent advances in utilization of biochar[J]. Renewable Sustainable Energy Rev,2015,42:1055−1064.
    [9] VERMA D, GOPE P C, SINGH I, JAIN S. Processing and Properties of Bagasse Fibers. Biomass and Bioenergy: Processing and Properties. [M], Springer International Publishing, 2014: 63-75.
    [10] GARCA-PÈREZ M, CHAALA A, ROY C. Vacuum pyrolysis of sugarcane bagasse[J]. J Anal Appl Pyrolysis,2002,65:111−136. doi: 10.1016/S0165-2370(01)00184-X
    [11] DRUMMOND A R F, DRUMMOND I W. Pyrolysis of sugar cane bagasse in a wire-mesh reactor[J]. Ind Eng Chem Res,1996,35:1263−1268. doi: 10.1021/ie9503914
    [12] FRAGA-ARAUJO A R. Pyrolytic decomposition of lignocellulosic materials[D]. London: Imperial College, University of London, 1990.
    [13] SARANGI D, HIEROLD C, KARIMI A. Carbon nanotubes over metallic wires and its possible applications[J]. Fullerenes, Nanotub, Carbon Nanostruct,2005,13:243−254. doi: 10.1081/FST-200039287
    [14] POUDEL YR, LI W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review[J]. Mater Today Phys,2018,7:7−34. doi: 10.1016/j.mtphys.2018.10.002
    [15] XIE X, GAN T, SUN D, WU K. Application of multi‐walled carbon nanotubes/nafion composite film in electrochemical determination of Pb2+[J]. Fullerenes, Nanotub, Carbon Nanostruct,2008,16:103−13. doi: 10.1080/15363830801887935
    [16] HARRIS P J F. Carbon Nanotube Science: Synthesis, Properties and Applications [M]. Cambridge: Cambridge University Press, 2009.
    [17] MAZOV I N, RUDINA N A, ISHCHENKO A V., KUZNETSOV V L, ROMANENKO A I, ANIKEEVA O B, SUSLYAEV V I, ZHURAVLEV V A. Structural and physical properties of MWNT/polyolefine composites[J]. Fullerenes, Nanotub, Carbon Nanostructures,2012,20:510−518. doi: 10.1080/1536383X.2012.655956
    [18] ROSLAN M S, CHAUDARY K T, HAIDER Z, AZIZ M S, ALI J. Multi-walled carbon nanotubes grow under low pressure hydrogen, air, and argon ambient by arc discharge plasma[J]. Fullerenes, Nanotub, Carbon Nanostructures,2017,25:269−272. doi: 10.1080/1536383X.2017.1285287
    [19] CHRZANOWSKA J, HOFFMAN J, MAŁOLEPSZY A, MAZURKIEWICZ M, KOWALEWSKI T A, SZYMANSKI Z, STOBINSKI L. Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength[J]. Phys Status Solidi,2015,252:1860−1867. doi: 10.1002/pssb.201451614
    [20] AWADALLAH A E, ABDEL-HAMID S M, EL-DESOUKI D S, ABOUL-ENEIN A A, ABOUL-GHEIT A K. Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts[J]. Egypt J Pet,2012,21:101−107. doi: 10.1016/j.ejpe.2012.11.005
    [21] SHUKRULLAH S, MOHAMED N M, SHAHARUN M S, NAZ M Y. Mass production of carbon nanotubes using fluidized bed reactor: A Short review[J]. Trends Appl Sci Res,2014,9:121−131. doi: 10.3923/tasr.2014.121.131
    [22] KUMAR M, ANDO Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production[J]. J Nanosci Nanotechnol,2010,10:3739−58. doi: 10.1166/jnn.2010.2939
    [23] AWADALLAH A E, ABDEL-MOTTALEB M S, ABOUL-ENEIN A A, YONIS M M, ABOUL-GHEIT A K. Catalytic decomposition of natural gas to CO/CO2-free hydrogen production and carbon nanomaterials using MgO-supported monometallic iron family catalysts[J]. Chem Eng Commun,2015,202:163−74. doi: 10.1080/00986445.2013.836631
    [24] AWADALLAH A E, ABOUL-ENEIN A A, EL-DESOUKI D S, ABOUL-GHEIT A K. Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VIII catalysts[J]. Appl Surf Sci,2014,296:100−107. doi: 10.1016/j.apsusc.2014.01.055
    [25] AWADALLAH A E, AHMED W, NOOR EL-DIN M R, ABOUL-ENEIN A A. Novel aluminosilicate hollow sphere as a catalyst support for methane decomposition to CO <inf>x</inf> -free hydrogen production[J]. Appl Surf Sci,2013,287:415−422.
    [26] CHEN F, WU C, DONG L, VASSALLO A, WILLIAMS P T, HUANG J. Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust[J]. Appl Catal B: Environ,2016,183:168−175. doi: 10.1016/j.apcatb.2015.10.028
    [27] LIU W J, TIAN K, HE Y R, JIANG H, YU H Q. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage[J]. Environ Sci Technol,2014,48:13951−13959. doi: 10.1021/es504184c
    [28] THOMPSON E, DANKS A E, BOURGEOIS L, SCHNEPP Z. Iron-catalyzed graphitization of biomass[J]. Green Chem,2015,17:551−556. doi: 10.1039/C4GC01673D
    [29] BERND M G S, BRAGANÇA S R, HECK N, FILHO LCPDS. Synthesis of carbon nanostructures by the pyrolysis of wood sawdust in a tubular reactor[J]. J Mater Res Technol,2017,6:171−177. doi: 10.1016/j.jmrt.2016.11.003
    [30] ALVES J O, ZHUO C, LEVENDIS Y A, TENÓRIO J A S. Catalytic conversion of wastes from the bioethanol production into carbon nanomaterials[J]. Appl Catal B: Environ,2011,106:433−444. doi: 10.1016/j.apcatb.2011.06.001
    [31] ABOUL-ENEIN A A, ARAFA E I, ABDEL-AZIM S M, AWADALLAH A E. Synthesis of multiwalled carbon nanotubes from polyethylene waste to enhance the rheological behavior of lubricating grease[J]. Fullerenes, Nanotub, Carbon Nanostructures, 2020. Doi: 10.1080/1536383X.2020.1806828.
    [32] ABOUL-ENEIN A A, AWADALLAH A E. Impact of Co/Mo ratio on the activity of CoMo/MgO catalyst for production of high-quality multi-walled carbon nanotubes from polyethylene waste[J]. Mater Chem Phys,2019,238:121879. doi: 10.1016/j.matchemphys.2019.121879
    [33] ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructured carbon materials using Fe-Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste[J]. Chem Eng J,2018,354:802−816. doi: 10.1016/j.cej.2018.08.046
    [34] INFANTES-MOLINA A, MÉRIDA-ROBLES J, RODRÍGUEZ-CASTELLÓN E, PAWELEC B, FIERRO JLG, JIMÉNEZ-LÓPEZ A. Catalysts based on Co/zirconium doped mesoporous silica MSU for the hydrogenation and hydrogenolysis/hydrocracking of tetralin[J]. Appl Catal A: Gen,2005,286:239−248. doi: 10.1016/j.apcata.2005.03.022
    [35] AWADALLAH A E, ABOUL-ENEIN A A. Catalytic decomposition of methane to COx-free hydrogen and carbon nanotubes over Co-W/MgO catalysts[J]. Egypt J Pet,2015,24:299−306. doi: 10.1016/j.ejpe.2015.07.008
    [36] AWADALLAH A E, ABOUL-ENEIN A A, ABOUL-GHEIT A K. Impact of group VI metals addition to Co/MgO catalyst for non-oxidative decomposition of methane into COx-free hydrogen and carbon nanotubes[J]. Fuel,2014,129:27−36. doi: 10.1016/j.fuel.2014.03.038
    [37] TUTI S, PEPE F. On the catalytic activity of cobalt oxide for the steam reforming of ethanol[J]. Catal lett,2008,122:196−203.
    [38] MILLER J E, JACKSON N B, EVANS L, SAULT A G, GONZALES M M. The formation of active species for oxidative dehydrogenation of propane on magnesium molybdates[J]. Catal Lett,1999,58:147−152. doi: 10.1023/A:1019013514105
    [39] ABOUL-ENEIN A A, AWADALLAH A E. A novel design for mass production of multi-walled carbon nanotubes using Co-Mo/MgO catalyst via pyrolysis of polypropylene waste: Effect of operating conditions[J]. Fullerenes, Nanotub, Carbon Nanostructures,2018,26:591−605. doi: 10.1080/1536383X.2018.1476344
    [40] ABOUL-FOTOUH S M K, ALI L I, NAGHMASH M A, ABOUL-GHEIT N A K. Effect of the Si/Al ratio of HZSM-5 zeolite on the production of dimethyl ether before and after ultrasonication[J]. Fuel Chem Technol,2017,45(5):581−588.
    [41] AWADALLAH A E, EL-DESOUKI D S, ABOUL-GHEIT N A K, IBRAHIM A H, ABOUL-GHEIT A K. Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to COx-free hydrogen and carbon nanomaterials[J]. Int J Hydrogen Energy,2016,41:16890−902. doi: 10.1016/j.ijhydene.2016.07.081
    [42] TRAVKINA O S, AGLIULLIN M R, FILIPPOVA N A, KHAZIPOVA A N, DANILOVA I G, GRIGOR’EVA N G, NARENDER N, PAVLOV M L, KUTEPOV B I. Template-free synthesis of high degree crystallinity zeolite y with micro-meso-macroporous structure[J]. RSC Adv,2017,7:32581−32590. doi: 10.1039/C7RA04742H
    [43] KATADA N, IGI H, KIM J H, NIWA M. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J]. J Phys Chem B,1997,101:5969−5677.
    [44] WEBER R W, MÖLLER K P, O’CONNOR C T. The chemical vapour and liquid deposition of tetraethoxysilane on ZSM-5, mordenite and beta[J]. Microporous Mesoporous Mater,2000,35–36:533−543.
    [45] CHU S, YANG L, GUO X, DONG L, CHEN X, LI Y, MU X. The influence of pore structure and Si/Al ratio of HZSM-5 zeolites on the product distributions of Α-cellulose hydrolysis[J]. Mol Catal,2018,445:240−247. doi: 10.1016/j.mcat.2017.11.032
    [46] GAO Y, ZHENG B, WU G, MA F, LIU C. Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization[J]. RSC Adv,2016,6:83581−83588. doi: 10.1039/C6RA17084F
    [47] KOUVA S, KANERVO J, SCHÜSSLER F, OLINDO R, LERCHER JA, KRAUSE O. Sorption and diffusion parameters from vacuum-TPD of ammonia on H-ZSM-5[J]. Chem Eng Sci,2013,89:40−48. doi: 10.1016/j.ces.2012.11.025
    [48] LÜ J, ZHOU S, MA K, MENG M, TIAN Y. The effect of P modification on the acidity of HZSM-5 and P-HZSM-5/CuO-ZnO-Al2O3 mixed catalysts for hydrogen production by dimethyl ether steam reforming[J]. Chin J Catal,2015,36:1295−1303.
    [49] PRASEK J, DRBOHLAVOVA J, CHOMOUCKA J, HUBALEK J, JASEK O, ADAM V, KIZEK R. Methods for carbon nanotubes synthesis—review[J]. J Mater Chem,2011,21:15872. doi: 10.1039/c1jm12254a
    [50] DEBALINA B, REDDY RB, VINU R. Production of carbon nanostructures in biochar, bio-oil and gases from bagasse via microwave assisted pyrolysis using Fe and Co as susceptors[J]. J Anal Appl Pyrolysis,2017,124:310−318. doi: 10.1016/j.jaap.2017.01.018
    [51] RABO J A. Zeolite Chemistry and Catalysis, Acs Monograph No 171 [M], Washington , DC: ACS, 1976.
    [52] MIHALCIK D J, MULLEN C A, BOATENG A A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components[J]. J Anal Appl Pyrolysis,2011,92:224−232. doi: 10.1016/j.jaap.2011.06.001
    [53] RAHMAN M M, LIU R, CAI J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review[J]. Fuel Process Technol,2018,180:32−46.
    [54] WANG K, KIM K H, BROWN R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chem,2014,16:727−735. doi: 10.1039/C3GC41288A
    [55] WANG K, BROWN R C. Catalytic pyrolysis of corn dried distillers grains with solubles to produce hydrocarbons[J]. ACS Sustainable Chem Eng,2014,2:2142−2148. doi: 10.1021/sc5003374
    [56] VICHAPHUND S, AHT-ONG D, SRICHAROENCHAIKUL V, ATONG D. Catalytic upgrading pyrolysis vapors of jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS[J]. Renewable Energy,2014,65:70−77. doi: 10.1016/j.renene.2013.07.016
    [57] DRESSELHAUS M S, DRESSELHAUS G, SAITO R, JORIO A. Raman spectroscopy of carbon nanotubes[J]. Phys Rep,2005,409:47−99. doi: 10.1016/j.physrep.2004.10.006
    [58] DRESSELHAUS M S, JORIO A, HOFMANN M, DRESSELHAUS G, SAITO R. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Lett,2010,10:751−758. doi: 10.1021/nl904286r
    [59] GONG J, LIU J, WAN D, CHEN X, WEN X, MIJOWSKA E, JIANG Z, WANG Y, TANG T. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Appl Catal A: Gen,2012,449:112−120. doi: 10.1016/j.apcata.2012.09.028
    [60] DILEO R A, LANDI B J, RAFFAELLE R P. Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy[J]. J Appl Phys,2007,101:64307−64312. doi: 10.1063/1.2712152
    [61] YAO D, ZHANG Y, WILLIAMS P T, YANG H, CHEN H. Co-production of hydrogen and carbon nanotubes from real-world waste plastics: Influence of catalyst composition and operational parameters[J]. Appl Catal B: Environ,2018,221:584−597. doi: 10.1016/j.apcatb.2017.09.035
    [62] LI J, LI J, ZHU Q. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/MgO catalyst[J]. Chin J Chem Eng,2018,26:2344−2350. doi: 10.1016/j.cjche.2018.05.025
    [63] FARAHEEN KABIR AHMAD S, FAZARA MD ALI U, MD ISA K, RAHAYU MOHAMED A, SATAIMURTHI O. Comparative performance of catalytic and non-catalytic pyrolysis of sugarcane bagasse in catatest reactor system [C]// IOP Conference Series: Materials science and engineering. London: Institute of Physics Publishing, 2020: 012069.
    [64] ABOUL-ENEIN A A, SOLIMAN F S, BETIHA M A. Co-production of hydrogen and carbon nanomaterials using NiCu/SBA15 catalysts by pyrolysis of a wax by-product: Effect of Ni-Cu loading on the catalytic activity[J]. Int J Hydrogen Energy,2019,44:31104−31120. doi: 10.1016/j.ijhydene.2019.10.042
  • 加载中
图(13)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  86
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 修回日期:  2021-05-14
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回