留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矸石与半焦富氧混烧特性及污染物排放特性研究

戴若薇 赵瑞东 王志奇 秦建光 陈天举 吴晋沪

戴若薇, 赵瑞东, 王志奇, 秦建光, 陈天举, 吴晋沪. 煤矸石与半焦富氧混烧特性及污染物排放特性研究[J]. 燃料化学学报(中英文), 2022, 50(2): 152-159. doi: 10.1016/S1872-5813(21)60132-9
引用本文: 戴若薇, 赵瑞东, 王志奇, 秦建光, 陈天举, 吴晋沪. 煤矸石与半焦富氧混烧特性及污染物排放特性研究[J]. 燃料化学学报(中英文), 2022, 50(2): 152-159. doi: 10.1016/S1872-5813(21)60132-9
DAI Ruo-wei, ZHAO Rui-dong, WANG Zhi-qi, QIN Jian-guang, CHEN Tian-ju, WU Jin-hu. Study on the oxy-fuel co-combustion of coal gangue and semicoke and the pollutants emission characteristics[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 152-159. doi: 10.1016/S1872-5813(21)60132-9
Citation: DAI Ruo-wei, ZHAO Rui-dong, WANG Zhi-qi, QIN Jian-guang, CHEN Tian-ju, WU Jin-hu. Study on the oxy-fuel co-combustion of coal gangue and semicoke and the pollutants emission characteristics[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 152-159. doi: 10.1016/S1872-5813(21)60132-9

煤矸石与半焦富氧混烧特性及污染物排放特性研究

doi: 10.1016/S1872-5813(21)60132-9
基金项目: 国家重点研发计划(2017YFB0602003),国家自然科学基金(U1610254),中国科学院内蒙古院区科技合作(2020CG0116)和中央引导地方科技发展资金资助
详细信息
    作者简介:

    戴若薇:dairw@qibebt.ac.cn

    通讯作者:

    Tel: 0532-80662763, E-mail: zhaord@qibebt.ac.cn

  • 中图分类号: TQ534

Study on the oxy-fuel co-combustion of coal gangue and semicoke and the pollutants emission characteristics

Funds: The project was supported by the National Key R&D Program of China (2017YFB0602003), National Natural Science Foundation of China (U1610254), Science and Technology Cooperation Project of Chinese Academy of Sciences and Inner Mongolia (2020CG0116) and Central Guidance Fund for Local Science and Technology Development of China
More Information
  • 摘要: 利用热重分析仪和管式炉实验,研究了煤矸石与半焦的富氧混烧特性,考察了半焦混烧比例、O2含量和反应温度对燃烧特性和污染物排放特性的影响。结果表明,混烧半焦和提高O2含量均可显著改善混合燃料的燃烧性能,当半焦混烧比例为75%时,着火和燃尽指数最高。随半焦混烧比例增大,CO和SO2转化率均逐渐降低。提高反应温度,CO转化率降低,SO2转化率增大,NO转化率呈现先升高然后降低或缓慢增加趋势。反应温度为900 ℃时,混烧半焦可降低燃烧过程的NO排放量。其余反应温度下,混烧半焦会增大NO转化率。随O2含量升高,混合燃料富氧燃烧过程的CO转化率降低,NO转化率升高,SO2峰值释放量和转化率呈先降低后升高的趋势。当O2体积分数为20%时,SO2转化率最低。
  • FIG. 1261.  FIG. 1261.

    FIG. 1261.  FIG. 1261.

    图  1  管式炉实验装置示意图

    Figure  1  Schematic diagram of the tube furnace experimental device

    1: O2; 2: CO2; 3, 4, 5, 6: mass flow controller; 7, 8: gas mixer; 9: inner quartz tube; 10: outer quartz tube; 11: sample tube; 12: furnace; 13: exhaust system; 14: flue gas analyzer

    图  2  不同半焦混烧比例下TG(a)和DTG(b)曲线

    Figure  2  TG (a) and DTG (b) curves of co-combustion at different semicoke blending ratios (O2 concentration is 30%)

    图  3  不同O2体积分数下TG (a)和DTG (b)曲线

    Figure  3  TG (a) and DTG (b) curves at different O2 concentrations (semicoke blending ratio is 50%)

    图  4  CO转化率随半焦混烧比例和反应温度的变化

    Figure  4  xCO at different temperatures and semicoke blending ratios

    图  5  NO转化率随半焦混烧比例和反应温度的变化

    Figure  5  xNO curves at different temperatures and semicoke blending ratios

    图  6  SO2转化率随半焦混烧比例和反应温度的变化

    Figure  6  ${x_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}} $ curves at different temperatures and semicoke blending ratios

    图  7  CO排放特性(a)和转化率(b)随O2体积分数的变化

    Figure  7  CO emission characteristic (a) and xCO (b) curves at different O2 concentrations

    图  8  NO排放特性(a)和转化率(b)随O2体积分数的变化

    Figure  8  NO emission characteristic (a) and xNO (b) curves at different O2 concentrations

    图  9  SO2排放特性(a)和转化率(b)随O2体积分数的变化

    Figure  9  SO2 emission characteristic (a) and ${x_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}} $ (b) curves at different O2 concentrations

    表  1  样品的元素分析、工业分析和热值

    Table  1  Proximate, ultimate and heating value analyses of samples

    SampleProximate analysis war/%Ultimate analysis war/%LHV/(MJ·kg−1)
    MVAFC*CHNSO*
    Coal gangue1.5222.9052.2523.3340.672.220.611.501.2314.73
    Semicoke8.558.1110.0573.2973.811.320.880.395.0023.18
    note: M-moisture; V-volatile; A-ash; FC-fixed carbon; LHV-lower heating value, ar-received basis, *: by difference
    下载: 导出CSV

    表  2  不同半焦混烧比例下混合燃料的燃烧特征参数

    Table  2  Combustion characteristic parameters at different semicoke blending ratios (O2 concentration is 30%)

    Semicoke
    blending
    ratios/%
    t/℃Di × 10−3
    /min−3
    Df × 10−4
    /min−3
    S × 10−8
    /(min−2·℃−3)
    titmtf
    04334936681.971.574.07
    254334936572.041.775.23
    504695158583.522.365.63
    754695158583.872.597.45
    1004745348583.441.878.23
    下载: 导出CSV

    表  3  不同O2体积分数下混合燃料的燃烧特征参数

    Table  3  Combustion characteristic parameters at different O2 concentrations (semicoke blending ratio is 50%)

    O2 concentration/%ti/℃tm/℃tf/℃Di × 10−3/min−3Df × 10−4/min−3S × 10−8/(min−2·℃−3)
    104786137021.260.465.21
    204685636921.981.067.71
    304695158583.522.365.63
    404645246674.146.3014.93
    下载: 导出CSV
  • [1] 杨方亮. 煤炭资源综合利用发电现状分析与前景探讨[J]. 中国煤炭,2020,46(10):67−74.

    YANG Fang-liang. Current situation analysis and prospect discussion on comprehensive utilization of coal resources for power generation[J]. China Coal,2020,46(10):67−74.
    [2] 郭军军, 张泰, 李鹏飞, 柳朝晖, 郑楚光. 中国煤粉富氧燃烧的工业示范进展及展望[J]. 中国电机工程学报,2021,41(4):1197−1208.

    GUO Jun-jun, ZHANG Tai, LI Peng-fei, LIU Zhao-hui, ZHENG Chu-guang. Industrial demonstration progress and trend in pulverized coal oxy-fuel combustion in China[J]. Proc CSEE,2021,41(4):1197−1208.
    [3] TANG R, LIU Q W, ZHONG W Q, LIAN G Q, YU H Q. Experimental study of SO2 emission and sulfur conversion characteristics of pressurized oxy-fuel co-combustion of coal and biomass[J]. Energy Fuels,2020,34:16693−16704. doi: 10.1021/acs.energyfuels.0c03116
    [4] 朱成成, 邢献军, 陈泽宇, 糜梦星, 张学飞. O2/CO2/N2气氛下玉米秸秆混煤燃烧特性及动力学分析[J]. 太阳能学报,2021,42(1):385−391.

    ZHU Cheng-cheng, XING Xian-jun, CHEN Ze-yu, MI Meng-xing, ZHANG Xue-fei. Combustion characteristics and kinetic analysis of corn straw and coal co-combustion in O2/CO2/N2 atmosphere[J]. Acta Energ Sol Sin,2021,42(1):385−391.
    [5] ZHU T, HU Y Y, TANG C L, WANG L M, LIU X, DENG L, CHE D F. Experimental study on NOx formation and burnout characteristics of pulverized coal in oxygen enriched and deep-staging combustion[J]. Fuel,2020,272:117639. doi: 10.1016/j.fuel.2020.117639
    [6] TAN Y W, CROISET E, DOUGLAS M A, THAMBIMUTHU K V. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel,2006,85:507−512. doi: 10.1016/j.fuel.2005.08.010
    [7] MAFFEI T, KHATAMI R, PIERUCCI S, FARAVELLI T, RANZI E, LEVENDIS Y A. Experimental and modeling study of single coal particle combustion in O2/N2 and oxy-fuel (O2/CO2) atmospheres[J]. Combust Flame,2013,160:2559−2572. doi: 10.1016/j.combustflame.2013.06.002
    [8] MUREDDU M, DESSI F, ORSINI A, FERRARA F, PETTINAU A. Air-and oxygen-blown characterization of coal and biomass by thermogravimetric analysis[J]. Fuel,2018,212:626−637. doi: 10.1016/j.fuel.2017.10.005
    [9] 刘彦. O2/CO2煤粉燃烧脱硫及NO生成特性实验和理论研究[D]. 杭州: 浙江大学, 2004.

    LIU Yan. The experimental and theory study of characteristics about desurfurization and NO release under O2/CO2 coal combustion[D]. Hangzhou: Zhejiang University, 2004.
    [10] RIAZA J, GIL M V, ÁLVAREZ L, PEVIDA C, PIS J J, RUBIERA F. Oxy-fuel combustion of coal and biomass blends[J]. Energy,2012,41:429−435. doi: 10.1016/j.energy.2012.02.057
    [11] 蒲舸, 张力, 王炯, 冉景煌, 唐强, 闰云飞. 生物质与煤矸石混烧特性实验研究[J]. 工程热物理学报,2009,30(2):333−335. doi: 10.3321/j.issn:0253-231X.2009.02.044

    PU Ge, ZHANG Li, WANG Jiong, RAN Jing-Yu, TANG Qiang, YAN Yun-fei. Experimental study on co-combustion characteristics of biomass and coal residue[J]. J Eng Therm,2009,30(2):333−335. doi: 10.3321/j.issn:0253-231X.2009.02.044
    [12] 刘锟, 宋长忠, 张博文, 龚振, 刘岩. 煤矸石与石油焦混合燃烧特性热重分析[J]. 洁净煤技术,2019,25(S2):14−18.

    LIU Kun, SONG Chang-zhong, ZHANG Bo-wen, GONG Zhen, LIU Yan. Thermogravimetric analysis of combustion characteristics of coal gangue and petroleum coke mixture[J]. Clean Coal Technol,2019,25(S2):14−18.
    [13] BI H B, WANG C X, LIN Q Z, JIANG X D, JIANG C L, BAO L. Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR[J]. Energy,2020,213:118790. doi: 10.1016/j.energy.2020.118790
    [14] 龚振, 宋长忠, 贾相如, 李媛媛, 李泽. 富氧气氛下循环流化床中生物质与煤矸石燃烧污染物排放研究[J]. 中国电机工程学报,2020,40(12):3951−3958.

    GONG Zhen, SONG Chang-zhong, JIA Xiang-ru, LI Yuan-yuan, LI Ze. Study on pollutant emission from biomass and gangue combustion in CFB under oxygen-enriched atmosphere[J]. Proc CSEE,2020,40(12):3951−3958.
    [15] GONG Z, SONG C Z, LI Y Y, LI Z, JIA X R. Combustion characteristics of coal gangue and biomass under an O2/CO2 atmosphere[J]. Therm Sci,2020,24(5A):2809−2821.
    [16] ZHANG Y Y, NAKANO J, LIU L L, WANG X D, ZHANG Z T. Co-combustion and emission characteristics of coal gangue and low-quality coal[J]. J Therm Anal Calorim,2015,120:1883−1892. doi: 10.1007/s10973-015-4477-4
    [17] YANG Z Z, ZHANG Y Y, LIU L L, WANG X D, ZHANG Z T. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions[J]. Waste Manage,2016,50:213−221. doi: 10.1016/j.wasman.2015.11.011
    [18] ZHU S J, LYU Q G, ZHU J G, WU H X, WU G L. Effect of air distribution on NOx emissions of pulverized coal and char combustion preheated by a circulating fluidized bed[J]. Energy Fuels,2018,32:7909−7915. doi: 10.1021/acs.energyfuels.8b01366
    [19] ZHANG J P, WANG C A, JIA X W, WANG P Q, CHE D F. Experimental study on combustion and NO formation characteristics of semicoke[J]. Fuel,2019,258:116108. doi: 10.1016/j.fuel.2019.116108
    [20] ZHAO R D, QIN J G, CHEN T J, WANG L L, WU J H. Experimental study on co-combustion of low rank coal semicoke and oil sludge by TG-FTIR[J]. Waste Manage,2020,116:91−99. doi: 10.1016/j.wasman.2020.08.007
    [21] 张圆圆. 煤矸石燃烧特性及影响机制研究[D]. 太原: 山西大学, 2016.

    ZHANG Yuan-yuan. The study of combustion characteristic and influence mechanism of coal gangue[D]. Taiyuan: Shanxi University, 2016.
    [22] LIN Y S, MA X Q, NING X X, YU Z S. TGA-FTIR analysis of co-combustion characteristics of paper sludge and oil-palm solid wastes[J]. Energy Conv Manage,2015,89:727−734. doi: 10.1016/j.enconman.2014.10.042
    [23] WANG C B, LEI M, YAN W P, WANG S L, JIA L F. Combustion characteristics and ash formation of pulverized coal under pressurized oxy-fuel conditions[J]. Energy Fuels,2011,25:4333−4344. doi: 10.1021/ef200956q
    [24] ZHANG Y Y, GUO Y X, CHENG F Q, YAN K Z, CAO Y. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis[J]. Thermochim Acta,2015,614:137−148. doi: 10.1016/j.tca.2015.06.018
    [25] LI X G, MIAO W J, LV Y, WANG Y B, GAO C S, JIANG D B. TGA-FTIR investigation on the co-combustion characteristics of heavy oil fly ash and municipal sewage sludge[J]. Thermochim Acta,2018,666:1−9. doi: 10.1016/j.tca.2018.05.023
    [26] CHEN L, LIU L, GENG K, ZHAO Y J, WU J Q, SUN R, SUN S Z, QIU P H. Investigation of heterogeneous NO reduction by biomass char and coal char blends in a microfluidized bed reaction analyzer[J]. Energy Fuels,2020,34:6317−6325. doi: 10.1021/acs.energyfuels.0c00080
    [27] ULUSOY B, WU H, LIN W G, KARLSTROM O, LI S G, SONG W L, GLARBORG P, DAM-JOHANSEN K. Reactivity of sewage sludge, RDF, and straw chars towards NO[J]. Fuel,2019,236:297−305. doi: 10.1016/j.fuel.2018.08.164
    [28] 李伟. 循环流化床富氧燃烧SO2生成和脱除特性研究[D]. 北京: 中国科学院工程热物理研究所, 2015.

    LI Wei. Study on SO2 emission and removal characteristics for oxy-fuel circulating fluidized bed combustion[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2015.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  90
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-07-01
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回