留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Addition of bismuth to Pt and Pd for electric power generation with selective cogeneration of acetate from ethanol in a fuel cell type reactor

Lima F. S. Fontes E. H. Nandenha J. de Souza R.F.B. Neto A.O.

LimaF. S., FontesE. H., NandenhaJ., de SouzaR.F.B., NetoA.O.. 燃料电池式反应器中Pt和Pd中加入Bi用于催化乙醇发电并选择性联产醋酸盐[J]. 燃料化学学报(中英文), 2021, 49(10): 1540-1548. doi: 10.1016/S1872-5813(21)60141-X
引用本文: LimaF. S., FontesE. H., NandenhaJ., de SouzaR.F.B., NetoA.O.. 燃料电池式反应器中Pt和Pd中加入Bi用于催化乙醇发电并选择性联产醋酸盐[J]. 燃料化学学报(中英文), 2021, 49(10): 1540-1548. doi: 10.1016/S1872-5813(21)60141-X
Lima F. S., Fontes E. H., Nandenha J., de Souza R.F.B., Neto A.O.. Addition of bismuth to Pt and Pd for electric power generation with selective cogeneration of acetate from ethanol in a fuel cell type reactor[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1540-1548. doi: 10.1016/S1872-5813(21)60141-X
Citation: Lima F. S., Fontes E. H., Nandenha J., de Souza R.F.B., Neto A.O.. Addition of bismuth to Pt and Pd for electric power generation with selective cogeneration of acetate from ethanol in a fuel cell type reactor[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1540-1548. doi: 10.1016/S1872-5813(21)60141-X

燃料电池式反应器中Pt和Pd中加入Bi用于催化乙醇发电并选择性联产醋酸盐

doi: 10.1016/S1872-5813(21)60141-X
详细信息
  • 中图分类号: O646

Addition of bismuth to Pt and Pd for electric power generation with selective cogeneration of acetate from ethanol in a fuel cell type reactor

Funds: The project was supported by the CAPES, FAPESP (2017/11937-4) and CNPq (302709/2020-7)
More Information
  • 摘要: 直接乙醇燃料电池作为便携式移动电源受到越来越多的关注,如乙醇能量密度高、可再生、无毒、清洁、便于储存和运输等优点。然而,乙醇燃料电池的研究也面临一些严重问题,其中C−C键断裂是最为挑战的问题之一。近年来有报道表明,乙醇的完全氧化(包含C−C键断裂过程)并没有显示出燃料电池效率的增加,相反乙醇不完全氧化的催化剂会导致更明显的催化电流增加。同时金属Bi掺杂会对催化剂产生电子效应和几何效应并有效增加碱性体系中催化剂的活性位中心和抗CO中毒能力。因此,本工作将铋掺杂在铂和钯中制备出PtBi/C和PdBi/C作为乙醇燃料电池催化剂,同时研究Bi掺杂催化剂对乙醇燃料电池性能以及乙醇的不完全氧化产物醋酸盐的影响,为乙醇燃料电池电-化学品联产提供一定的依据。  以硼氢化钠为还原剂,Vulcan XC-72 (Cabot)导电炭为载体制备了Pt/C、Pd/C、PtBi/C和 PdBi/C (20% 质量比)炭载催化剂,其中PtBi和PdBi原子比均为95∶5。首先将金属前驱体溶于H2O/异丙醇溶液(50/50, 体积比)中,加入Vulcan XC-72导电炭黑充分混合,然后加入硼氢化钠在常温常压下充分反应,过滤洗涤干燥备用。其次,对所制备的催化剂进行TEM、XRD、XPS、电化学以及光谱电化学进行表征和测试。电化学、光谱电化学在三电极电解池中进行,将所制备的催化剂分散在超薄多孔电极上制备成工作电极,对电极为Pt片电极,参比电极为Ag/AgCl电极。电解液为碱性1 mol/L KOH的乙醇溶液,在电化学工作站上进行CV、LSV扫描以及在不同电位下测试溶液的ATR-FTIR谱。最后,燃料电池测试在一个面积为5 cm2的单电池上进行,阳极为2 mol/L乙醇 + 3 mol/L KOH溶液,流量为2 mL/min,阴极通入氧气,并研究催化剂的构成及性能对电池性能的影响。  采用硼氢化钠还原法合成Pt/C、PtBi(95∶5)/C、Pd/C和PdBi(95∶5)/C。Pd/C和PdBi/C的晶体结构呈现FCC特征,Pt/C和PtBi/C的晶体结构也呈现FCC特征。XRD也揭示了铋原子对Pt晶体结构的影响。在1 mol/L KOH溶液中,异位XPS和循环伏安法显示这些金属具有较高的氧化态。透射电镜显示Pd/C有一定的纳米粒子聚集,PdBi/C有一定的有序结构。红外光谱(ATR-FTIR)结果表明,Bi效应由于吸附能力较弱,抑制了碳酸盐的生成,增加了醋酸盐的生成。由于醋酸盐优先生成,且不被碳酸盐离子毒害,PtBi/C具有最佳的电化学和DEFC性能。  通过在Pt和Pd掺杂金属Bi制备具有电子调控的双金属炭载PtBi(95∶5)/C和PdBi(95∶5)/C催化剂,以增强乙醇氧化反应催化氧化过程。透射电镜(TEM)和X射线光电子能谱(XPS)结果表明,Bi含量不影响PdBi纳米颗粒的尺寸,但会影响PtBi纳米颗粒的尺寸。X射线衍射分析表明,Bi掺杂改变了Pt晶体结构中的晶格参数。此外,ATR-FTIR结果表明,碳酸盐的形成受到抑制,乙酸盐产量增加。极化曲线和功率密度曲线结果表明,PtBi/C催化剂具有更高的功率密度,几乎是Pt/C的6倍。在线性扫描伏安实验中,PtBi/C具有最高的电流密度(44 mW /cm2)和最低的起始电位(−0.6 V)。在电流-时间实验中,它也具有最高的最终电流密度。因此,在Pt和Pd中掺杂铋催化剂被证明是一种很有前途的燃料电池发电和醋酸盐的联产方法。
  • FIG. 975.  FIG. 975.

    FIG. 975. 

    Figure  1  XRD measurements for Pt, Pd, and Bi-material supported on carbon Vulcan XC72 for 2θ from 20° up to 90°

    Figure  2  Nanoparticle size distribution in its corresponding TEM images

    Figure  3  XPS spectra of Bi 4f, Pt 4f and Pd 3d and its oxidation states, for Pt and Pd, Bi dopped materials

    Figure  4  Cyclic voltammetry in 1 mol/L of KOH for all electrocatalysts V = 10 mV/s

    Figure  5  (a) LSV measurement at V = 10 mV/s and (b) CT curves at −0.3 V under alkaline medium 1 mol/L of KOH and ethanol 2 mol/L

    Figure  6  ATR-FTIR spectra of ethanol 2 mol/L + KOH 1 mol/L for Pd/C, PdBi/C, Pt/C, and PtBi/C electrocatalysts the EOR products obtained through deconvolved Lorentzian bands shape, the background spectra were collected at −0.85 V, the potential step was set to 100 mV

    Figure  7  DEFC experiments in ethanol 2.0 mol/L and 3.0 mol/L of KOH, with a delivery flux of 2.0 mL/min. the cathode was fed by oxygen with a temperature setting of 85 °C, and the DEFC temperature was set up to 100 °C

  • [1] FONTES E H, RAMOS C E D, NANDENHA J, PIASENTIN R M, NETO A O, LANDERS R. Structural analysis of PdRh/C and PdSn/C and its use as electrocatalysts for ethanol oxidation in alkaline medium[J]. Int J Hydrogen Energy,2019,44(2):937−951. doi: 10.1016/j.ijhydene.2018.11.049
    [2] NETO A O, NANDENHA J, ASSUMPÇÃO M H M T, LINARDI M, SPINACÉ E V, DE SOUZA R F B. In situ spectroscopy studies of ethanol oxidation reaction using a single fuel cell/ATR-FTIR setup[J]. Int J Hydrogen Energy,2013,38(25):10585−10591. doi: 10.1016/j.ijhydene.2013.06.026
    [3] ALMEIDA C V S, ALMAGRO L E, VALÉRIO NETO E S, CORO J, SUÁREZ M, EGUILUZ K I B, SALAZAR-BANDA G R. Polyhydroxylated fullerenes: An efficient support for Pt electrocatalysts toward ethanol oxidation[J]. J Electroanal Chem,2020,878:114663. doi: 10.1016/j.jelechem.2020.114663
    [4] QIAN Q-Y, YANG C, ZHOU Y-G, YANG S, XIA X-H. Efficient C–C bond cleavage in ethanol electrooxidation on porous Pt catalysts[J]. J Electroanal Chem,2011,660(1):57−63. doi: 10.1016/j.jelechem.2011.06.005
    [5] WANG F, WANG K, AN C, AN C, ZHANG W. PtPdCu nanodendrites enable complete ethanol oxidation by enhancing CC bond cleavage[J]. J Colloid and Interface Sci,2020,571:118−125. doi: 10.1016/j.jcis.2020.03.039
    [6] PIWOWAR J, LEWERA A. On the absence of a beneficial role of Rh towards CC bond cleavage during low temperature ethanol electrooxidation on PtRh nanoalloys[J]. J Electroanal Chem,2020,875:114229.
    [7] LAI S C S, KOPER M T M. Ethanol electro-oxidation on platinum in alkaline media[J]. Phys Chem Chem Phy,2009,11(44):10446−10456. doi: 10.1039/b913170a
    [8] FARIAS M J S, CHEUQUEPÁN W, TANAKA A A, FELIU J M. Unraveling the nature of active sites in ethanol electro-oxidation by site-specific marking of a Pt catalyst with isotope-labeled 13CO[J]. J Phys Chem Let,2018,9(6):1206−1210. doi: 10.1021/acs.jpclett.8b00030
    [9] FERRE-VILAPLANA A, BUSO-ROGERO C, FELIU J M, HERRERO E. Cleavage of the C–C bond in the ethanol oxidation reaction on platinum. Insight from experiments and calculations[J]. J Phys Chem C,2016,120(21):11590−11597. doi: 10.1021/acs.jpcc.6b03117
    [10] MARKOVIC N M, GASTEIGER H A, ROSS P N, JIANG X, VILLEGAS I, WEAVER M J. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces[J]. Electrochim Acta,1995,40(1):91−98. doi: 10.1016/0013-4686(94)00241-R
    [11] LIU J, CAO J, HUANG Q, LI X, ZOU Z, YANG H. Methanol oxidation on carbon-supported Pt-Ru-Ni ternary nanoparticle electrocatalysts[J]. J Power Sources,2008,175(1):159−165. doi: 10.1016/j.jpowsour.2007.08.100
    [12] DE SOUZA R F B, SILVA J C M, ASSUMPÇÃO M H M T, NETO A O, SANTOS M C. Ethanol oxidation reaction using PtSn/C + Ce/C Electrocatalysts: Aspects of ceria contribution[J]. Electrochim Acta,2014,117:292−298. doi: 10.1016/j.electacta.2013.11.129
    [13] MESSA MOREIRA T F, NETO S A, LEMOINE C, KOKOH K B, MORAIS C, NAPPORN T WOLIVI P. Rhodium effects on Pt anode materials in a direct alkaline ethanol fuel cell[J]. RSC Adv,2020,10(58):35310−35317. doi: 10.1039/D0RA06570F
    [14] LIMA F H B, PROFETI D, LIZCANO-VALBUENA W H, TICIANELLI E A, GONZALEZ E R. Carbon-dispersed Pt-Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature[J]. J Electroanal Chem,2008,617(2):121−129. doi: 10.1016/j.jelechem.2008.01.024
    [15] FONTES E H, DA SILVA S G, SPINACE E V, NETO A O, DE SOUZA R F B. In situ ATR-FTIR studies of ethanol electro-oxidation in alkaline medium on PtRh/C electrocatalyst prepared by an alcohol reduction Process[J]. Electrocatal,2016,7(4):297−304. doi: 10.1007/s12678-016-0308-z
    [16] PALMA L M, ALMEIDA T S, DE ANDRADE A R. Comparative study of catalyst effect on ethanol electrooxidation in alkaline medium: Pt- and Pd-based catalysts containing Sn and Ru[J]. J Electroanal Chem,2020,878:114592. doi: 10.1016/j.jelechem.2020.114592
    [17] TUSI M M, POLANCO N S O, DA SILVA S G, SPINACÉ E V, NETO A O. The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium[J]. Electrochem Commun,2011,13(2):143−146. doi: 10.1016/j.elecom.2010.11.035
    [18] KOUAMÉ B S R, BARANTON S, BRAULT P, CANAFF C, CHAMORRO-CORAL W, CAILLARD A, DE OLIVEIRA VIGIER K, COUTANCEAU C. Insights on the unique electro-catalytic behavior of PtBi/C materials[J]. Electrochim Acta,2020,329:135161. doi: 10.1016/j.electacta.2019.135161
    [19] NETO A O, TUSI M M, DE OLIVEIRA POLANCO N S, DA SILVA S G, COELHO DOS SANTOS M, SPINACÉ E V. PdBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium[J]. Int J Hydrogen Energy,2011,36(17):10522−10526. doi: 10.1016/j.ijhydene.2011.05.154
    [20] DU W, MACKENZIE K E, MILANO D F, DESKINS N A, SU D, TENG X. Palladium–tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium[J]. ACS Catal,2012,2(2):287−297. doi: 10.1021/cs2005955
    [21] OTTONI C A, DA SILVA S G, DE SOUZA R F B, NETO A O. PtAu electrocatalyst for glycerol oxidation reaction using a ATR-FTIR/single direct alkaline glycerol/air cell in situ study[J]. Electrocatal,2016,7(1):22−32. doi: 10.1007/s12678-015-0277-7
    [22] YOVANOVICH M, PIASENTIN R M, AYOUB J M S, NANDENHA J, FONTES E H, DE SOUZA R F B, BUZZO G S, SILVA J C M, SPINACÉ E V, ASSUMPÇÃO M H M T, NETO A O, DA SILVA S G. PtBi/C electrocatalysts for formic acid electro-oxidation in acid and alkaline electrolyte[J]. Int J Electrochem Sci,2015,10(6):4801−4811.
    [23] NING X, ZHOU X, LUO J, MA L, XU X, ZHAN L. Effects of the synthesis method and promoter content on bismuth-modified platinum catalysts in the electro-oxidation of glycerol and formic acid[J]. ChemElectroChem,2019,6(6):1870−1877. doi: 10.1002/celc.201900043
    [24] CAI J, HUANG Y, GUO Y. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium[J]. Electrochim Acta,2013,99:22−29. doi: 10.1016/j.electacta.2013.03.059
    [25] KIM H J, CHOI S M, NAM S H, SEO M H, KIM W B. Carbon-supported PtNi catalysts for electrooxidation of cyclohexane to benzene over polymer electrolyte fuel cells[J]. Catal Today,2009,146(1/2):9−14. doi: 10.1016/j.cattod.2008.11.012
    [26] KIM H J, CHOI S M, NAM S H, SEO M H, KIM W B. Effect of Rh content on carbon-supported PtRh catalysts for dehydrogenative electrooxidation of cyclohexane to benzene over polymer electrolyte membrane fuel cell[J]. Appl Catal A: Gen,2009,352(1/2):145−151.
    [27] CAI R, SONG S, JI B, YANG W, XIN Q, SUN G, DOUVARTZIDES S, TSIAKARAS P. Benzene electro-oxidation in a PEMFC for phenol and electricity cogeneration[J]. Appl Catal B: Environ,2005,61(3/4):184−191.
    [28] BIANCHINI C, BAMBAGIONI V, FILIPPI J, MARCHIONNI A, VIZZA F, BERT P, TAMPUCCI A. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells[J]. Electrochem Commun,2009,11(5):1077−1080. doi: 10.1016/j.elecom.2009.03.022
    [29] NANDENHA J, PIASENTIN R M, SILVA L M G, FONTES E H, NETO A O, DE SOUZA R F B. Partial oxidation of methane and generation of electricity using a PEMFC[J]. Ionics,2019,25(10):5077−5082. doi: 10.1007/s11581-019-03186-z
    [30] BUZZO G S, RODRIGUES A C B, DE SOUZA R F B, SILVA J C M, BASTOS E L, SPINACÉ E V, NETO A O, ASSUMPÇÃO M H M T. Synthesis of hydroquinone with co-generation of electricity from phenol aqueous solution in a proton exchange membrane fuel cell reactor[J]. Catal Commun,2015,59:113−115. doi: 10.1016/j.catcom.2014.09.048
    [31] SANTOS M C L, NUNES L C, SILVA L M G, RAMOS A S, FONSECA F C, DE SOUZA R F B, NETO A O. Direct Alkaline Anion Exchange Membrane Fuel Cell to Converting Methane into Methanol[J]. ChemistrySelect,2019,4(39):11430−11434. doi: 10.1002/slct.201902421
    [32] SOUZA F M, NANDENHA J, BATISTA B L, OLIVEIRA V H A, PINHEIRO V S, PARREIRA L S, NETO A O, SANTO M C. PdxNby electrocatalysts for DEFC in alkaline medium: Stability, selectivity and mechanism for EOR[J]. Int J Hydrogen Energy,2018,43(9):4505−4516. doi: 10.1016/j.ijhydene.2018.01.058
    [33] DE CARMARGO V F, FONTES E H, NANDENHA J, DE SOUZA R F B, NETO A O. High activity of Pt-Rh supported on C-ITO for ethanol oxidation in alkaline medium[J]. Res Chem Intermediates,2020,46(2):1555−1570. doi: 10.1007/s11164-019-04050-5
    [34] RAMOS A S, SANTOS M C L, GODOI C M, DE QUEIROZ L C, NANDENHA J, FONTES E H, BRITO W R, MACHADO M B, NETO A O, DE SOUZA R F B. High CO tolerance of Pt nanoparticles synthesized by sodium borohydride in a time-domain NMR spectrometer[J]. Int J Hydrogen Energy,2020,45(43):22973−22978. doi: 10.1016/j.ijhydene.2020.06.105
    [35] NILSSON A, PETTERSSON L G M. Chapter 2 - Adsorbate Electronic Structure and Bonding on Metal Surfaces. In: Nilsson A, Pettersson LGM, Nørskov JK, editors. Chemical Bonding at Surfaces and Interfaces [M]. Amsterdam: Elsevier; 2008: 57−142.
    [36] FARNOOD A, RANJBAR M, SALAMATI H. Localized surface plasmon resonance (LSPR) detection of hydrogen gas by Pd2+/Au core/shell like colloidal nanoparticles[J]. Int J Hydrogen Energy,2020,45(1):1158−1169. doi: 10.1016/j.ijhydene.2019.10.168
    [37] LIU J, LI D, LI R, WANG Y, WANG Y, FAN C. PtO/Pt4+-BiOCl with enhanced photocatalytic activity: Insight into the defect-filled mechanism[J]. Chem Eng J,2020,395:123954. doi: 10.1016/j.cej.2019.123954
    [38] MOTIN A M, HAUNOLD T, BUKHTIYAROV A V, BERA A, RAMESHAN C, RUPPRECHTER G. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies[J]. Appl Surf Sci,2018,440:680−687. doi: 10.1016/j.apsusc.2018.01.148
    [39] ANTOLINI E, GONZALEZ E R. Alkaline direct alcohol fuel cells[J]. J Power Sources,2010,195(11):3431−3450. doi: 10.1016/j.jpowsour.2009.11.145
    [40] FANG X, WANG L, SHEN P K, CUI G, BIANCHINI C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution[J]. J Power Sources,2010,195(5):1375−1378. doi: 10.1016/j.jpowsour.2009.09.025
    [41] ZHOU Z-Y, WANG Q, LIN J-L, TIAN N, SUN S-G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim Acta,2010,55(27):7995−7999. doi: 10.1016/j.electacta.2010.02.071
    [42] GERALDES A N, DA SILVA D F, PINO E S, DA SILVA J C M, DE SOUZA R F B, HAMMER P, SPINACÉ E V, NETO A O, LINARDI M, DOS SANTOS M C. Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation[J]. Electrochim Acta,2013,111:455−465. doi: 10.1016/j.electacta.2013.08.021
  • 加载中
图(8)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  37
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-07-13
  • 网络出版日期:  2021-08-17
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回