留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi含量对溴氧化铋光催化性能的影响

赵立业 安汝舜 石鑫 陈国博 王亮 李春虎

赵立业, 安汝舜, 石鑫, 陈国博, 王亮, 李春虎. Bi含量对溴氧化铋光催化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(2): 250-256. doi: 10.1016/S1872-5813(21)60144-5
引用本文: 赵立业, 安汝舜, 石鑫, 陈国博, 王亮, 李春虎. Bi含量对溴氧化铋光催化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(2): 250-256. doi: 10.1016/S1872-5813(21)60144-5
ZHAO Li-ye, AN Ru-shun, SHI Xin, CHEN Guo-bo, WANG Liang, LI Chun-hu. The effect of Bi content on the photocatalytic performance of bismuth oxybromides[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 250-256. doi: 10.1016/S1872-5813(21)60144-5
Citation: ZHAO Li-ye, AN Ru-shun, SHI Xin, CHEN Guo-bo, WANG Liang, LI Chun-hu. The effect of Bi content on the photocatalytic performance of bismuth oxybromides[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 250-256. doi: 10.1016/S1872-5813(21)60144-5

Bi含量对溴氧化铋光催化性能的影响

doi: 10.1016/S1872-5813(21)60144-5
详细信息
    通讯作者:

    Tel: 0532-66782502,E-mail: chenguobo@ouc.edu.cn

    wangliang_good@163. com

  • #: 共同第一作者
  • 中图分类号: TQ426.9

The effect of Bi content on the photocatalytic performance of bismuth oxybromides

  • 摘要: 采用水热法和溶剂热法制备BiOBr、Bi3O4Br和Bi4O5Br2三种光催化剂,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)与紫外-可见漫反射光谱(UV-vis DRS)表征光催化剂的晶体结构、表面形貌和光学性能,利用密度泛函理论计算光催化剂的能带结构和态密度,在可见光照射下,通过降解RhB考察光催化剂的活性。结果表明,Bi的含量会影响光催化剂的导带位置和禁带宽度,Bi4O5Br2光催化剂降解效果最好,能够在50 min内将RhB完全降解。自由基捕获实验证明,超氧自由基(·${\rm{O}}_2^- $)是光催化降解RhB的主要活性物质。
    1)  #: 共同第一作者
  • FIG. 1271.  FIG. 1271.

    FIG. 1271.  FIG. 1271.

    图  1  BiOBr、Bi3O4Br和Bi4O5Br2的XRD谱图

    Figure  1  XRD patterns of BiOBr, Bi3O4Br and Bi4O5Br2

    图  2  Bi4O5Br2的XPS谱图:(a)总谱,(b)Bi 4f,(c)O 1s,(d)Br

    Figure  2  XPS spectra of the as-prepared Bi4O5Br2 (a): survey; (b): Bi 4f; (c): O 1s; (d): Br 3d

    图  3  (a)BiOBr,(b)Bi3O4Br和(c)Bi4O5Br2的SEM照片

    Figure  3  SEM images of BiOBr (a), Bi3O4Br (b) and Bi4O5Br2 (c)

    图  4  (a)BiOBr、Bi3O4Br和Bi4O5Br2的紫外-可见漫反射光谱,(b)BiOBr、Bi3O4Br和Bi4O5Br2的禁带宽度外推图

    Figure  4  (a) UV-vis DRS of BiOBr, Bi3O4Br, and Bi4O5Br2 and (b) plots of (αhv)1/2 versus energy (hv) for the band gap energies of BiOBr, Bi3O4Br and Bi4O5Br2

    图  5  BiOBr、Bi3O4Br和Bi4O5Br2的(a)Mott-Schottky曲线和(b)在pH = 0 处的能带结构图

    Figure  5  Photoanode Mott-Schottky plots (a) and the derived energy band diagrams vs RHE at pH=0 (b) of the BiOBr, Bi3O4Br and Bi4O5Br2

    图  6  BiOBr、Bi3O4Br和Bi4O5Br2的光电流曲线

    Figure  6  Transient photocurrent responses (i-t) of BiOBr, Bi3O4Br and Bi4O5Br2

    图  7  DFT模拟的BiOBr、Bi3O4Br和Bi4O5Br2能带结构和态密度

    Figure  7  Band structure and DOS of BiOBr, Bi3O4Br and Bi4O5Br2

    图  8  可见光催化降解RhB溶液

    Figure  8  Photocatalytic degradation of RhB solutions under visible light irradiation

    图  9  一级反应动力学拟合数据图

    Figure  9  First-order reaction kinetic fitting data graph

    图  10  光催化降解RhB的自由基捕获实验:(a)BiOBr,(b)Bi3O4Br和(c)Bi4O5Br2

    Figure  10  Photocatalytic degradation of RhB in the presence of various scavengers (a): BiOBr; (b): Bi3O4Br; (c): Bi4O5Br2

    表  1  三种光催化剂的一级反应动力学参数

    Table  1  First-order reaction kinetic parameters of three samples

    SampleBiOBrBi3O4BrBi4O5Br2
    k/min−10.0100.03670.0642
    R20.9790.9910.982
    下载: 导出CSV
  • [1] VAYA D, SUROLIA P K. Semiconductor based photocatalytic degradation of pesticides: An overview[J]. Environ Technol Innovation,2020,20:101128. doi: 10.1016/j.eti.2020.101128
    [2] IKREEDEEGH RR, TAHIR M. A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels[J]. J CO2 Util,2021,43:101381. doi: 10.1016/j.jcou.2020.101381
    [3] 胡庆松. 卤氧铋复合催化剂构建及其增强光催化去除水中污染物研究[D]. 上海: 华东师范大学, 2020.

    HU Qing-song. Construction of bismuth oxyhalide composite catalysts with enhanced photocatalytic activity for the removal of contaminants[D]. Shanghai: East China Normal University, 2020.
    [4] SUN J J, LI X Y, ZHAO Q D, LIU B J. Ultrathin nanoflake-assembled hierarchical BiOBr microflower with highly exposed {001} facets for efficient photocatalytic degradation of gaseous ortho-dichlorobenzene[J]. App Catal B: Environ,2021,281:119478. doi: 10.1016/j.apcatb.2020.119478
    [5] MAO D J, DING S S, MENG L J, DAI Y X, SUN C, YANG S G, HE H. One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants[J]. App Catal B: Environ,2017,207:153−165. doi: 10.1016/j.apcatb.2017.02.010
    [6] TIAN H D, CHENG R R, LIN M H, LI P, LV Y H, RAN S L. Oxygen-vacancy-rich ultrathin BiOBr nonosheets for high-performance supercapacitor electrodes[J]. Inorg Chem Commun,2020,118:108018. doi: 10.1016/j.inoche.2020.108018
    [7] BAI Y, YANG P, WANG L, YANG B, XIE H Q, ZHOU Y, YE L Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO[J]. Chem Eng J,2019,360:473−482. doi: 10.1016/j.cej.2018.12.008
    [8] Mao D J, Yuan J L, Qu X L, SUN C, YANG S G, HE H. Size tunable Bi3O4Br hierarchical hollow spheres assembled with {0 0 1}-facets exposed nanosheets for robust photocatalysis against phenolic pollutants[J]. J Catal,2019,369:209−221. doi: 10.1016/j.jcat.2018.11.016
    [9] ZHANG H G, WANG W T, FENG LJ, LI C H WANG L. Effect of hydrothermal pH value on composition and morphology of bismuth oxybromide and their photocatalytic performance[J]. J Fuel Chem Technol,2019,47(5):582−589. doi: 10.1016/S1872-5813(19)30026-X
    [10] ZHANG W B, XIAO X, WU Q F, FAN Q, ZAHNG F C. Facile synthesis of novel Mn-doped Bi4O5Br2 for enhanced photocatalytic NO removal activity[J]. J Alloys Compd,2020,826:154204. doi: 10.1016/j.jallcom.2020.154204
    [11] ZHANG Y, YANG W. Comment on ''generalized gradient approximation made simple''[J]. Phys Rev Lett,1998,80(4):891−891. doi: 10.1103/PhysRevLett.80.891
    [12] MONKHORST H J, PACK J D. Special points for brillonin-zone integrations[J]. Phys Rev B,1976,13(12):5188−5192. doi: 10.1103/PhysRevB.13.5188
    [13] LI K L, LEE WW, LU CS, DAI Y M, CHOU S Y, CHEN S L, LIN H P, CHEN C C. Synthesis of BiOBr, Bi3O4Br, and Bi12O17Br2 by controlled hydrothermal method and their photocatalytic properties[J]. J Taiwan Inst Chem Eng,2014,45(5):2688−2697. doi: 10.1016/j.jtice.2014.04.001
    [14] JIN X L, LV C, ZHOU X, XIE H Q, SUN S F, LIU Y, MENG Q Q, CHEN G. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity[J]. Nano Energy,2019,64:103955. doi: 10.1016/j.nanoen.2019.103955
    [15] WANG X K, LIU Y X, WANG J N, ZHANG J M, HUANG Y H, WEI X M. Theoretical investigation of the photocatalytic mechanism of single Au adsorption on the Bi4O5Br2 (101) surface[J]. Chem Phys Lett,2020,757(6):137851.
    [16] GUO N N, CAO Y L, RONG Y L, JIA D Z. Green synthesis of BiOBr modified Bi2O2CO3 nanocomposites with enhanced visible-responsive photocatalytic properties[J]. RSC Adv,2016,6(108):106046. doi: 10.1039/C6RA22385K
    [17] YANG P, WANG J C, YUE G Z, YANG R Z, ZHAO P X, YANG L J, ZHANG X C, ASTRUC D. Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity[J]. J Photoch Photobio A,2020,388:112169. doi: 10.1016/j.jphotochem.2019.112169
    [18] LI R, XIE F X, LIU J X, WANG Y W, WANG Y F, ZHANG X C, FAN C M. Synthesis of Bi4O5Br2 from reorganization of BiOBr and its excellent visible light photocatalytic activity[J]. Dalton Trans,2016,45:9182−9186. doi: 10.1039/C6DT00997B
    [19] KANAGARAI T, THIRIPURANTHAGAN S. Photocatalytic activities of novel SrTiO3-BiOBr heterojunction catalysts towards the degradation of reactive dyes[J]. App Catal B: Environ,2017,207:218−232. doi: 10.1016/j.apcatb.2017.01.084
    [20] AO Y H, WANG K D, WANG P F, WANG C, HOU J. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation[J]. App Catal B: Environ,2016,194:157−168. doi: 10.1016/j.apcatb.2016.04.050
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2117
  • HTML全文浏览量:  113
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 修回日期:  2021-06-21
  • 网络出版日期:  2021-08-23
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回