留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化碳在聚氨酯中的资源化应用

李晓云 李其峰 赵雨花 亢茂青 王军威

李晓云, 李其峰, 赵雨花, 亢茂青, 王军威. 二氧化碳在聚氨酯中的资源化应用[J]. 燃料化学学报(中英文), 2022, 50(2): 195-209. doi: 10.1016/S1872-5813(21)60145-7
引用本文: 李晓云, 李其峰, 赵雨花, 亢茂青, 王军威. 二氧化碳在聚氨酯中的资源化应用[J]. 燃料化学学报(中英文), 2022, 50(2): 195-209. doi: 10.1016/S1872-5813(21)60145-7
LI Xiao-yun, LI Qi-feng, ZHAO Yu-hua, KANG Mao-qing, WANG Jun-wei. Utilization of carbon dioxide in polyurethane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 195-209. doi: 10.1016/S1872-5813(21)60145-7
Citation: LI Xiao-yun, LI Qi-feng, ZHAO Yu-hua, KANG Mao-qing, WANG Jun-wei. Utilization of carbon dioxide in polyurethane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 195-209. doi: 10.1016/S1872-5813(21)60145-7

二氧化碳在聚氨酯中的资源化应用

doi: 10.1016/S1872-5813(21)60145-7
基金项目: 国家自然科学基金(52003286),山西省青年基金(201901D211586),山西省重点研发计划项目(201903D121104)和兰州市科技计划项目(2020-2-2)资助
详细信息
    作者简介:

    李晓云:lixiaoyun@sxicc.ac.cn

    通讯作者:

    Tel: 13934212841,E-mail: wangjw@sxicc.ac.cn

  • 中图分类号: O633; O643

Utilization of carbon dioxide in polyurethane

Funds: The project was supported by Chinese National Natural Science Foundation (52003286), Shanxi Province Science Foundation for Youths (201901D211586), Key Research and Development Program of Shanxi Province (201903D121104) and Science and Technology Program of Lanzhou City (2020-2-2)
  • 摘要: 随着现代社会的快速发展,人们对能源的需求与日俱增,目前,发展中国家仍以化石燃料为主要能源投入,其燃烧产生的二氧化碳排放带来的温室效应和环境问题已引起举世关注。因此,通过对二氧化碳进行捕集、封存与转化利用,实现碳减排和碳中和目标成为目前研究的热点。其中,二氧化碳基高分子材料的制备在实现二氧化碳资源化利用的同时,也为聚合物的绿色生产提供了新思路。基于此,本文综述了二氧化碳在聚氨酯中的资源化利用现状,着重对其在材料中的物理、化学应用进行了阐述,并详细介绍了在转化利用过程中的制备技术和方法。
  • FIG. 1265.  FIG. 1265.

    FIG. 1265.  FIG. 1265.

    图  1  以CO2为原料合成有机化合物的反应[16]

    Figure  1  Synthesis of organic compounds from CO2[16]

    (with permission from ACS Publication)

    图  2  CO2加成物发泡剂化学结构

    Figure  2  Chemical structure of CO2 adducts for polyurethane foams

    图  3  超临界CO2中Fe(CF3SO3)3吸收和电导率随浸泡时间的变化[26]

    Figure  3  Variation of Fe(CF3SO3)3 uptake and conductivity with soak time in SCCO2[26]

    (with permission from ACS Publication)

    图  4  PO与CO2共聚反应

    Figure  4  Copolymerization of PO and CO2

    图  5  卟啉铬催化剂结构式

    Figure  5  Chemical structure of (TPP)CrX catalyst

    图  6  Zn3[Co (CN)6]2 · xZnCl2 · yCA · zH2O催化剂的制备过程[50]

    Figure  6  Preparation process of Zn3[Co (CN)6]2 · xZnCl2 · yCA · zH2O catalyst[50]

    (with permission from Elsevier)

    图  7  快速链转移反应示意图[52]

    Figure  7  Schematic diagram of rapid chain transfer reaction[52]

    (with permission from John Wiley and Sons)

    图  8  环氧化物与CO2共聚反应可能存在的机理[64]

    Figure  8  Possible mechanism suggested for the copolymerisation of epoxy compound and CO2[64]

    (with permission from RSC Publication)

    图  9  碱金属卤化物催化下不同CO2压力可能存在的反应路径[84]

    Figure  9  Possible reaction paths under different CO2 Possible reaction paths under different CO2 pressures catalyzed by alkali metal halides[84]

    (with permission from ACS Publication)

    图  10  季鎓三溴盐结构示意图

    Figure  10  Scheme of quaternary onium tribromide

    图  11  SalenCo(Ⅲ)X类聚合物催化剂[89]

    Figure  11  Polymer catalyst from SalenCo(Ⅲ)X[89]

    (with permission from John Wiley and Sons)

    图  12  环碳酸酯合成反应过程示意图[93]

    Figure  12  Diagram of the synthesis of cyclocarbonate[93]

    (with permission from Elsevier)

    图  13  LiBr/γ-Al2O3催化剂上E51与CO2的反应机理[95]

    Figure  13  A plausible mechanism of cycloaddition of CO2 with E51[95]

    (with permission from John Wiley and Sons)

    图  14  聚氨酯体系中引入的分子内氢键结构

    Figure  14  Intramolecular hydrogen bond structures introduced in polyurethane

    图  15  氮丙啶与二氧化碳的共聚反应

    Figure  15  Copolymerization of aziridine with CO2

    图  16  CO2与环氧化合物、异氰酸酯化合物共聚反应制备PPCPU

    *PPC represent for the copolymerization product of CO2 and propylene oxide

    Figure  16  Preparation of PPCPU by copolymerization of CO2, epoxy compound and isocyanate compound

    表  1  不同发泡剂的软质聚氨酯泡沫制品性能对比[20]

    Table  1  Comparison of performances of flexible polyurethane foams with different foaming agents[20]

    Physical performances CO2 CFC-11
    Density/(kg·m−3) 16 16
    Tensile strength/kPa 75.6 67.8
    Elongation/% 241.2 176.6
    Resilience rate/% 46.5 38.9
    75% compression deformation /%(≯) 4.3 6.7
    下载: 导出CSV
  • [1] 中华环境编辑部. 以实际行动为全球应对气候变化作出应有贡献[J]. 中华环境,2021,(Z1):467.

    Editorial Department of China Environment. Take concrete actions to make due contribution to the global response to climate change[J]. China Environ,2021,(Z1):467.
    [2] NAIR M, ARVIN M B, PRADHAN R P, BAHMANI S. Is higher economic growth possible through better institutional quality and a lower carbon footprint? Evidence from developing countries[J]. Renewable Energy,2020,167(2):132−145.
    [3] LINN J. Interactions between climate and local air pollution policies: the case of european passenger cars[J]. Discussion Papers,2016,16−51.
    [4] FRIEDLINGSTEIN P O, SULLIVAN M, JONES M W, ANDREW R M, ZAEHLE S. Global carbon budget 2020[J]. Earth Syst Sci Data,2020,12(4):3269−3340. doi: 10.5194/essd-12-3269-2020
    [5] DAVIS S J, CALDEIRA K, MATTHEWS H D. Future CO2 emissions and climate change from existing energy infrastructure[J]. Science,2010,329(5997):1330−1333. doi: 10.1126/science.1188566
    [6] BETTS R A, JONES C D, KNIGHT J R, KEELING R F, KENNEDY J J. El Niño and a record CO2 rise[J]. Nat Clim Change,2016,6(9):806−810. doi: 10.1038/nclimate3063
    [7] HE M Y, SUN Y H, HAN B X. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling[J]. Angew Chem Int Ed,2013,52(37):9620−9633. doi: 10.1002/anie.201209384
    [8] HEPBURN C, ADLEN E, BEDDINGTON J, CARTER E A, FUSS S, DOWELL N M, MINX J C, SMITH P, CHARLOTTE K. The technological and economic prospects for CO2 utilization and removal[J]. Nature,2019,575(7781):87−97. doi: 10.1038/s41586-019-1681-6
    [9] ANDRES G T, ANNA R, EDWARD R W, DAVID J P, MILO S P, WILLIAMS C K. Pd in intermentallic nanoparticles for the hydrogenation of CO2 to methanol[J]. Appl Catal B: Environ,2018,220:9−18. doi: 10.1016/j.apcatb.2017.07.069
    [10] 黄建. 全球甲醇工业生产现状与发展趋势[J]. 中国化工贸易,2017,9(35):5−6. doi: 10.3969/j.issn.1674-5167.2017.35.004

    HUANG Jian. Production status and developing trend of global methanol industry[J]. China Chem Trade,2017,9(35):5−6. doi: 10.3969/j.issn.1674-5167.2017.35.004
    [11] SALLY M B, FRANKLIN M O J. Carbon dioxide capture and storage[J]. MRS Bull,2008,33(4):303−305. doi: 10.1557/mrs2008.63
    [12] 李阳. CCUS的关键利用[J]. 中国石油石化,2018,(23):17−19.

    LI Yang. Key utilization of CCUS[J]. China Pet,2018,(23):17−19.
    [13] POROSOFF M, YAN B, CHEN J. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities[J]. Energy Environ Sci,2016,9(1):62−73. doi: 10.1039/C5EE02657A
    [14] MEYLAN F D, MOREAU V, ERKMAN S. CO2 utilization in the perspective of industrial ecology, an overview[J]. J CO2 Util,2015,12:101−108. doi: 10.1016/j.jcou.2015.05.003
    [15] WANG W, QU Z, SONG L, FU Q. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction[J]. J Energy Chem,2020,40(1):22−30.
    [16] SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide[J]. Chem Rev,2007,107(6):2365−2387. doi: 10.1021/cr068357u
    [17] XIN H, SHEN Y D, LI X R. Synthesis and properties of cationic polyurethane-fluorinated acrylic hybrid latexes by emulsifier-free emulsion polymerization and the solvent-free method[J]. Polym Bull,2011,67(9):1849−1863. doi: 10.1007/s00289-011-0523-y
    [18] JAUDOUIN O, ROBIN J J, LOPEZ-CUESTA J M, PERRIN D, IMBERT C. Ionomer-based polyurethanes: A comparative study of properties and applications[J]. Polym Int,2012,61(4):495−510. doi: 10.1002/pi.4156
    [19] DAI J B, ZHANG X Y, CHAO J, BAI C Y. A new core-shell type fluorinated acrylic and siliconated polyurethane hybrid emulsion[J]. J Coat Technol Res,2007,4(3):283−288. doi: 10.1007/s11998-007-9042-z
    [20] 李佐花. 液体CO2作发泡剂的聚氨酯软泡生产工艺及设备[J]. 聚氨酯工业,2006,21(1):39−41. doi: 10.3969/j.issn.1005-1902.2006.01.011

    LI Zuo-hua. Production process and equipment of flexible polyurethane foam using liquid carbon dioxide as foaming agent[J]. Polyurethane ind,2006,21(1):39−41. doi: 10.3969/j.issn.1005-1902.2006.01.011
    [21] 沈晨光, 陈军, 陈金炎, 相明华, 罗振扬. 液态CO2辅助水发泡在喷涂聚氨酯硬泡中的研究[J]. 聚氨酯工业,2017,32(4):8−11. doi: 10.3969/j.issn.1005-1902.2017.04.003

    SHEN Chen-guang, CHEN Jun, CHEN Jin-yan, XIANG Ming-hua, LUO Zhen-yang. Study on liquid CO2 assisting water blown spray PU rigid foam[J]. Polyurethane Ind,2017,32(4):8−11. doi: 10.3969/j.issn.1005-1902.2017.04.003
    [22] 刘飞, 张用兵, 张兴刚. 低粘度全水发泡硬质聚氨酯组合料研究进展[J]. 材料开发与应用,2017,32(1):109−112.

    LIU Fei, ZHANG Yong-bing, ZHANG Xing-gang. Research progress on low viscosity water blown rigid polyurethane foams stuff[J]. Dev Appl Mater,2017,32(1):109−112.
    [23] 张青, 刘朝, 龙远铸, 樊翠蓉, 谢兴益. CO2加合物替代HFC用于聚氨酯硬泡的发泡研究[J]. 聚氨酯工业,2017,32(B05):52−56.

    ZHANG Qing, LIU Chao, LONG Yuan-zhu, FAN Cui-rong, XIE Xing-yi. CO2 adducts instead of HFC-365mfc as blowing agents for polyurethane foams[J]. Polyurethane Ind,2017,32(B05):52−56.
    [24] LONG Y, AN J, XIE X. CO2-releasing blowing agents from modified polyethylenimines slightly consume isocyanate groups while foaming polyurethanes[J]. Arab J Chem,2020,13(1):3226−3235. doi: 10.1016/j.arabjc.2018.10.007
    [25] 毕戈华, 毕玉遂, 陈唐建, 翟志强. 甲酸有机胺盐类化合物及其作为发泡剂的用途: 中国, 201610387843.0[P]. 2017-08-25

    BI Ge-hua, BI Yu-sui, CHEN Tang-jian, ZHAI Zhi-qiang. Formic acid organic amine salts and their uses as blowing agents: CN, 201610387843.0[P]. 2017-08-25.
    [26] FU Y P, PALO D R, ERKEY C, WEISS R A. Synthesis of conductive polypyrrole/polyurethane foams via a supercritical fluid process[J]. Macromolecules,1997,30(24):7611−7613. doi: 10.1021/ma9710747
    [27] WATKINS J J, MCCARTHY T J. Polymer/Metal nanocomposite synthesis in supercritical CO2[J]. Chem Mater,1995,7(11):1991−1994. doi: 10.1021/cm00059a001
    [28] HANSEN B N, HYBERTSON B M, BARKLEY R M, SIEVERS R E. Supercritical fluid transport-chemical deposition of films[J]. Chem Mater,1992,4(4):749−752. doi: 10.1021/cm00022a003
    [29] BOGGESS R K, TAYLOR L T, STOAKLEY D M, CLAIR A. Highly reflective polyimide films created by supercritical fluid infusion of a silver additive[J]. J Appl Polym Sci,1997,64(7):1309−1317. doi: 10.1002/(SICI)1097-4628(19970516)64:7<1309::AID-APP10>3.0.CO;2-S
    [30] 陈立班. 二氧化碳共聚物的合成、性质和应用[J]. 高分子通报,1999,3:128−133.

    CHEN Li-ban. Synthesis properties and applications of CO2 copolymers[J]. Polym Bull,1999,3:128−133.
    [31] VON DER A N, BARDOW A. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study[J]. Green Chem,2014,16(6):3272−3280. doi: 10.1039/C4GC00513A
    [32] TAKEDA N, INOUE S. Polymerization of 1, 2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins[J]. Macromol Chem Phys,1978,179(5):1377−1381. doi: 10.1002/macp.1978.021790529
    [33] CHEN K H, SHI G L, LI H R, WANG C M, DARENSBOURG D J. Design of betaine functional catalyst for efficient copolymerization of oxirane and CO2[J]. Macromolecules,2018,51(15):6057−6062. doi: 10.1021/acs.macromol.8b01103
    [34] BRANDES B D, JACOBEN E N. Synthesis of enantiopure 3-chlorostyrene oxide via an asymmetric epoxidation-hydrolytic kinetic resolution sequence[J]. Tetrahedron-Asymmetry,1997,8(23):3927−3933. doi: 10.1016/S0957-4166(97)00568-5
    [35] SUJITH S, MIN J K, SEONG J E, NA S J, LEE B Y. A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization[J]. Angew Chem Int Ed,2008,47(38):7306−7309. doi: 10.1002/anie.200801852
    [36] MOORE D R, CHENG M, LOBKOVSKY E B, COATES G W. Electronic and steric effects on catalysts for CO2/epoxide polymerization: subtle modifications resulting in superior activities[J]. Angew Chem Int Ed,2002,41(14):2599−2602. doi: 10.1002/1521-3773(20020715)41:14<2599::AID-ANIE2599>3.0.CO;2-N
    [37] ALLEN S D, MOORE D R, LOBKOVSKY E B, COATES G W. High-activity, single-site catalysts for the alternating copolymerization of CO2 and propylene oxide[J]. J Am Chem Soc,2002,124(48):14284−14285. doi: 10.1021/ja028071g
    [38] PAN X, LIU Z, CHENG R, YANG Y, ZHONG L, HE X L, LIU B P. Mechanism for alternating copolymerization of CO2 and propylene oxide in diethylzinc-water catalytic system: A DFT study[J]. J CO2 Util,2013,2:39−48. doi: 10.1016/j.jcou.2013.07.004
    [39] CHEN X, SHEN Z, ZHANG Y. New catalytic systems for the fixation of carbon dioxide. 1. copolymerization of CO2 and propylene oxide with new rare-earth catalysts-RE(P204)3-Al(i-Bu)3-R(OH)n[J]. Macromolecules,1991,24(19):5305−5308. doi: 10.1021/ma00019a014
    [40] LU H W, QIN Y S, WANG X H, YANG X G, ZHANG S B, WANG F S. Copolymerization of carbon dioxide and propylene oxide under inorganic oxide supported rare earth ternary catalyst[J]. J Polym Sci Pol Chem,2011,49(17):3797−3804. doi: 10.1002/pola.24817
    [41] 宋鹏飞, 纪小青, 孙文静, 毛旭东, 刘小军, 王荣民. 改性戊二酸锌催化CO2和环氧丙烷共聚合反应研究 [J]. 化工新型材料,2013,41(9):157−159. doi: 10.3969/j.issn.1006-3536.2013.09.052

    SONG Peng-fei, JI Xiao-qing, SUN Wen-jing, MAO Xu-dong, LIU Xiao-jun, WANG Rong-min. Copolymerization of carbon dioxide and propyleneoxide catalyzed by modified zinc glutarate[J]. New Chem Mater,2013,41(9):157−159. doi: 10.3969/j.issn.1006-3536.2013.09.052
    [42] LIM J, YUN S H, KIM M R, KIM II. Synthesis of Polycarbonate Polyols by Double-Metal Cyanide Catalyzed Copolymerization of Epoxide with Carbon Dioxide[J]. J Nanosci Nanotechnol,2017,17(10):7507−7514. doi: 10.1166/jnn.2017.14796
    [43] MANG S, COOPER A I, EAMON C M, CHAUHAN N, HOLMES A B. Copolymerization of CO2 and 1,2-cyclohexene oxide using a CO2-soluble chromium porphyrin catalyst[J]. Macromolecules,2000,33(2):303−308. doi: 10.1021/ma991162m
    [44] CHEN P, CHISHOLM M H, GALLUCCI J C, ZHANG X Y, ZHOU Z P. Binding of propylene oxide to porphyrin- and salen-M(III) cations, Where M = Al, Ga, Cr, and Co[J]. Inorg Chem,2005,44(8):2588−2595. doi: 10.1021/ic048597x
    [45] SUGIMOTO H, KURODA K. The cobalt porphyrin-Lewis base system: A highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions[J]. Macromolecules,2008,41(2):312−317. doi: 10.1021/ma702354s
    [46] 郭洪辰, 秦玉升, 王献红, 王佛松. 铝卟啉配合物催化二氧化碳与环氧丙烷共聚反应[J]. 应用化学,2019,36(10):1118−1127. doi: 10.11944/j.issn.1000-0518.2019.10.190031

    GUO Hong-chen, QIN Yu-sheng, WANG Xian-hong, WANG Fu-song. Copolymerization of carbon dioxide and propylene oxide under aluminum porphyrin catalyst[J]. Chin J Appl Chem,2019,36(10):1118−1127. doi: 10.11944/j.issn.1000-0518.2019.10.190031
    [47] MILGROM J. Method of making a polyether using a double metal cyanide complex compound: US, 3278457[P]. 1966-11-10.
    [48] CHEN S, HUA Z J, FANG Z, QI G R. Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst[J]. Polymer,2004,45(19):6519−6524. doi: 10.1016/j.polymer.2004.07.044
    [49] GAO Y G, QIN Y S, ZHAO X J, WANG F S, WANG X H. Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex[J]. J Polym Res,2012,19(5):9878−9886. doi: 10.1007/s10965-012-9878-5
    [50] OH H J, KO Y S. Effect of polymerization conditions on the polymer properties of CO2-cyclohexene oxide copolymer prepared by double metal cyanide catalyst[J]. J Ind Eng Chem,2013,19(6):1939−1943. doi: 10.1016/j.jiec.2013.03.002
    [51] KRUPER W, SWART D J. Carbon dioxide oxirane copolymers prepared using double metal cyanide complexes: US, 4500704[P]. 1985-02-19.
    [52] GAO Y G, GU L, QIN Y S, WANG X H, WANG F S. Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonate-ether) diols with tunable carbonate unit content[J]. J Polym Sci Pol Chem,2012,50(24):5177−5184. doi: 10.1002/pola.26366
    [53] 付双滨, 秦玉升, 乔立军, 王献红, 王佛松. 高伯羟基含量聚(碳酸酯-醚)多元醇的制备[J]. 高分子学报,2019,50(4):338−343. doi: 10.11777/j.issn1000-3304.2018.18274

    FU Shuang-bin, QIN Yu-sheng, QIAO Li-jun, WANG Xian-hong, WANG Fu-song. Synthesis of high primary hydroxyl content poly(carbonate-ether) polyol[J]. Acta Polym Sin,2019,50(4):338−343. doi: 10.11777/j.issn1000-3304.2018.18274
    [54] Li Z F, QIN Y S, ZHAO X J, WANG F S, ZHANG S B, WANG X H. Synthesis and stabilization of high-molecular-weight poly(propylene carbonate) from ZnCo-based double metal cyanide catalyst[J]. Eur Polym J,2011,47(11):2152−2157. doi: 10.1016/j.eurpolymj.2011.08.004
    [55] 尤星辰. 微乳法双金属氰化物催化二氧化碳和环氧丙烷共聚合成聚碳酸亚丙酯多元醇的研究[D]. 上海: 华东理工大学, 2013.

    YOU Xing-chen. Copolymerization of carbon dioxide and propylene oxide over double mental cyanide catalyst prepared by microemulsion method for the synthesis of polypropylene carbonate polyols[D]. Shanghai: East China University of Science and Technology, 2013.
    [56] 安娜. 二氧化碳基聚醚碳酸酯多元醇催化合成及其应用性能研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2019.

    AN Na. The catalytic synthesis and application properties study of carbon dioxide-based poly(ether-carbonate) polyols[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2019.
    [57] WANG J, ZHANG H M, MIAO Y Y, QIAO L J, WANG X H, WANG F S. UV-curable waterborne polyurethane from CO2-polyol with high hydrolysis resistance[J]. Polymer,2016,100:219−226. doi: 10.1016/j.polymer.2016.08.039
    [58] WANG J, ZHANG H M, MIAO Y Y, QIAO L J, WANG X H, WANG F S. Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance[J]. Green Chem,2016,18(2):524−530. doi: 10.1039/C5GC01373A
    [59] ALAGI P, GHORPADE R, CHOI Y J, PATIL U, KIM Ⅱ, BAIK J H, HONG S C. Carbon dioxide-based polyols as sustainable feedstock of thermoplastic polyurethane for corrosion-resistant metal coating[J]. ACS Sustainable Chem Eng,2017,5(5):3871−3881. doi: 10.1021/acssuschemeng.6b03046
    [60] LANGANKE J, WOLF A, HOFMANN J, BOHM K, SUBHANI M A, MULLER T E, LEITNER W, GURTLER C. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production[J]. Green Chem,2014,16(4):1865−1870. doi: 10.1039/C3GC41788C
    [61] 曹瀚, 巩如楠, 周振震, 王献红, 王佛松. 功能化二氧化碳基多元醇的精准合成[J]. 高分子学报,2021,52(8):1006−1014.

    CAO Han, GONG Ru-nan, ZHOU Zhen-zhen, WANG Xian-hong, WANG Fu-song. Precise synthesis of functional carbon dioxide-polyols[J]. Acta Polym Sin,2021,52(8):1006−1014.
    [62] LIU S J, MIAO Y Y, QIAO L J, QIN Y S, WANG X H, CHEN X S, WANG F S. Controllable synthesis of a narrow polydispersity CO2-based oligo(carbonate-ether) tetraol[J]. Polym Chem,2015,6(43):7580−7585. doi: 10.1039/C5PY00556F
    [63] LIU S J, QIN Y S, MIAO Y Y, QIAO L J, WANG X H. Cheap and fast: Oxalic acid initiated CO2-based polyols synthesized by a novel preactivation approach[J]. Polym Chem,2016,7(1):146−152. doi: 10.1039/C5PY01338K
    [64] DIENES Y, LEITNER W, MULLER M G J, OFFERMANS W K, REIER T, REINHOLDT A, WEIRICH T E, MULLER T E. Hybrid sol-gel double metal cyanide catalysts for the copolymerisation of styrene oxide and CO2[J]. Green Chem,2012,14(4):1168−1177. doi: 10.1039/c2gc16485j
    [65] LAMBETH R H, HENDERSON T J. Organocatalytic synthesis of (poly)hydroxyurethanes from cyclic carbonates and amines[J]. Polymer,2013,54(21):5568−5573. doi: 10.1016/j.polymer.2013.08.053
    [66] TOMITA H, SANDA F, ENDO T. Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine[J]. J Polym Sci -Pol Chem,2001,39(21):3678−3685. doi: 10.1002/pola.10009
    [67] MATSUKIZONO H, ENDO T. Phosgene-free syntheses and hydrolytic properties of water-soluble polyhydroxyurethanes with ester-carbonate-ether structures in their main chains[J]. Macromol Chem Phys,2017,218(18):1700043. doi: 10.1002/macp.201700043
    [68] KIM M R, KIM H S, PARK D W, LEE J K. Synthesis of cyclic carbonates based on diglycidyl ether of bisphenols by quaternary ammonium salts[J]. React Kinet Catal L,2001,72(2):373−381. doi: 10.1023/A:1010575820818
    [69] WILLIAMS C K, HILLMYER M A. Polymers from renewable resources: A perspective for a special issue of polymer reviews[J]. Polym Rev,2008,48(1):1−10. doi: 10.1080/15583720701834133
    [70] BAUMANN H, BUHLER M, FOCHEM H, HIRSINGER F, ZOEBELEIN H, FALBE J. Natural fats and oils-renewable raw materials for the chemical industry[J]. Angew Chem Int Ed,2010,27(1):41−62.
    [71] 司徒粤, 黄洪, 胡剑峰, 傅和青, 陈焕钦. 植物油合成聚合物的研究进展[J]. 精细化工,2006,23(11):1041−1047. doi: 10.3321/j.issn:1003-5214.2006.11.001

    SI-TU Yue, HUANG Hong, HU Jianfeng, FU He-qing, CHEN Huan-qin. Research progress of polymer synthesis based on plant oil[J]. Fine Chem,2006,23(11):1041−1047. doi: 10.3321/j.issn:1003-5214.2006.11.001
    [72] 李振荣, 赵雨花, 亢茂青, 王军威, 李其峰, 王心葵, 相宏伟. 大豆油五元环状碳酸酯与双酚A环氧树脂共混体系的研究[J]. 化工新型材料,2009,37(10):46−48. doi: 10.3969/j.issn.1006-3536.2009.10.016

    LI Zhen-rong, ZHAO Yu-hua, KANG Mao-qing, WANG Jun-wei, LI Qi-feng, WANG Xin-kui, XIANG Hong-wei. Study on blends of five-membered carbonated soybean oil/DGEBA[J]. New Chem Mater,2009,37(10):46−48. doi: 10.3969/j.issn.1006-3536.2009.10.016
    [73] OCHIAI B, SATO S I, ENDO T. Synthesis and properties of polyurethanes bearing urethane moieties in the side chain[J]. J Polym Sci -Pol Chem,2010,45(15):3408−3414.
    [74] ZHU H, CHEN L B, JIANG Y Y. Synthesis of propylene carbonate and some dialkyl carbonates in the presence of bifunctional catalyst compositions[J]. Polym Adv Technol,2015,7(8):701−703.
    [75] YUE C T, SU D, ZHANG X, WU W, XIAO L F. Amino-functional imidazolium ionic liquids for CO2 activation and conversion to form cyclic carbonate[J]. Catal Lett,2014,144(7):1313−1321. doi: 10.1007/s10562-014-1241-5
    [76] LI F W, XIAO L F, XIA C G, HU B. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system[J]. Tetrahedron Lett,2004,45(45):8307−8310. doi: 10.1016/j.tetlet.2004.09.074
    [77] QIN Y S, GUO H C, SHENG X F, WANG X H, WANG F S. An aluminum porphyrin complex with high activity and selectivity for cyclic carbonate synthesis[J]. Green Chem,2015,17(5):2853−2858. doi: 10.1039/C4GC02310B
    [78] CRUZ-MARTINEZ F D L, MARTINEZ J, GAONA M A, FERMANDE-BAEZA J, SANCHEZ-BARBA L F, RODRIGUEZ ANA M, CASTRO-OSMA J A, OTERO A, LARA-SANCHEZ A. Bifunctional aluminum catalysts for the chemical fixation of carbon dioxide into cyclic carbonates[J]. ACS Sustainable Chem Eng,2018,6(4):5322−5332. doi: 10.1021/acssuschemeng.8b00102
    [79] DAI W L, YIN S F, GUO R, LUO S L, DU X, AU C T. Synthesis of Propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst[J]. Catal Lett,2010,136(1):35−44.
    [80] MA D C, LI B Y, LIU K, ZHANG X L, ZOU W J, YANG Y Q, LI G H, SHI Z, FENG S H. Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions[J]. J Mater Chem A,2015,3(46):23136−23142. doi: 10.1039/C5TA07026K
    [81] MAI T, DAVIS R J. Cycloaddition of CO2 to epoxides over solid base catalysts[J]. J Catal,2001,199(1):85−91. doi: 10.1006/jcat.2000.3145
    [82] SONG J L, ZHANG Z F, HU S Q, WU T B, JIANG T, HAN B X. ChemInform Abstract: MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. ChemInform,2009,40(46):1031−1036.
    [83] ZHU J J, XIAO P, LI H L, CARABINEIRO S A C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis[J]. ACS Appl Mater Inter,2014,6(19):16449−16465. doi: 10.1021/am502925j
    [84] KIHARA N, HARA N, ENDO T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure[J]. J Org Chem,1993,58(23):6198−6202. doi: 10.1021/jo00075a011
    [85] OCHIAI B, INOUE S, ENDO T. One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine[J]. J Polym Sci Pol Chem,2005,43(24):6613−6618. doi: 10.1002/pola.21103
    [86] CALO V, NACCI A, MONOPOLI A, FANIZZI A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts[J]. Org Lett,2002,4(15):2561−2563. doi: 10.1021/ol026189w
    [87] TAO C, JING H W, JIN L L, QIU W Y. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides[J]. J Mol Catal A: Chem,2007,264(1/2):241−247. doi: 10.1016/j.molcata.2006.08.089
    [88] 常涛, 吴梅, 靳丽丽, 景欢旺, 邱文元. 溴化锌-季(鎓)三溴盐催化二氧化碳和环氧化合物偶联反应[J]. 催化学报,2007,28(5):404−406. doi: 10.3321/j.issn:0253-9837.2007.05.006

    CHANG Tao, WU Mei, JIN Li-li, JING Huan-wang, QIU Wen-yuan. ZnBr2-quaternary onium tribromide salt as a catalyst for the coupling reaction of carbon dioxide and epoxides[J]. Chin J Catal,2007,28(5):404−406. doi: 10.3321/j.issn:0253-9837.2007.05.006
    [89] PENG Y, JING H W. Catalytic asymmetric cycloaddition of carbon dioxide and propylene oxide using novel chiral polymers of BINOL-Salen-Cobalt(III) Salts[J]. Adv Synth Catal,2009,351(10):1325−1332.
    [90] ZHANG S L, HUANG Y Z, JING H W, YAO W X, YAN P. Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides[J]. Green Chem,2009,11(7):935−938. doi: 10.1039/b821513h
    [91] TAO C, JIN L, JING H. Bifunctional chiral catalyst for the synthesis of chiral cyclic carbonates from carbon dioxide and epoxides[J]. ChemCatChem,2009,1:379−383. doi: 10.1002/cctc.200900135
    [92] BHANAGE B M, FUJITA S I, IKUSHIMA Y, ARAI M. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity[J]. Appl Catal A: Gen,2001,219(1):259−266.
    [93] LU X B, XIU J H, HE R, JIN K, LUO L M, FENG X J. Chemical fixation of CO2 to ethylene carbonate under supercritical conditions: continuous and selective[J]. Appl Catal A: Gen,2005,275(1/2):73−78.
    [94] 李振荣. 碳酸酯化大豆油的合成及其胺解制备非异氰酸酯聚氨酯[D]. 太原: 中国科学院山西煤炭化学研究所, 2009

    LI Zhen-rong. Carbonated soybean oil synthesis from epoxidised soybean oil and CO2 & aminolysis to non-isocyanate polyurethane[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2009
    [95] LIANG H G, WANG J W, WANG F, FENG Y L, KANG M Q. An efficient heterogeneous LiBr/γ-Al2O3 catalyst for the cycloaddition of CO2 with diglycidyl ethers[J]. J Chem Technol Biot,2018,93:2271−2280. doi: 10.1002/jctb.5570
    [96] LI Y, ZOU B, HU C W, CAO M H. Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion[J]. Carbon,2016,99:79−89. doi: 10.1016/j.carbon.2015.11.074
    [97] LIANG H G, WANG J W, LI Q F, LIANG C, FENG Y L, KANG M Q. Supported ZnBr2 and carbon nitride bifunctional complex catalysts for the efficient cycloaddition of CO2 with diglycidyl ethers[J]. New J Chem,2018,42:16127−16137. doi: 10.1039/C8NJ03499K
    [98] 张源萍, 李晓云, 邸亚丽, 赵雨花, 亢茂青, 李其峰, 王军威. 蜜勒胺催化剂的制备及在环碳酸酯合成中的应用研究[J]. 燃料化学学报,2021,49(3):379−386.

    ZHANG Yuan-ping, LI Xiao-yun, DI Ya-li, ZHAO Yu-hua, KANG Mao-qing, LI Qi-feng, WANG Jun-wei. Study on the synthesis of melem catalyst and its application in synthesis of cyclic carbonate[J]. J Fuel Chem Technol,2021,49(3):379−386.
    [99] DURAIRAJ R B. Diol blends and methods for making and using the same: US 6303732[P]. 2001-10-16.
    [100] LI X Y, KE J X, WANG J W, KANG M Q, ZHAO Y H, LI Q F, LIANG C. CO2 derived amino-alcohol compounds for preparation of polyurethane adhesives[J]. J CO2 Util,2019,31:198−206. doi: 10.1016/j.jcou.2019.03.007
    [101] LI X Y, WANG J W, KANG M Q, ZHAO Y H, LI Q F, LIANG C. Preparation of green waterborne polyurethane with improved hydrolysis repellency from CO2 derived amino-alcohol[J]. Eur Polym J,2020,127:109571. doi: 10.1016/j.eurpolymj.2020.109571
    [102] SOGA K, CHIANG W Y, IKEDA S. Copolymerization of carbon dioxide with propyleneimine[J]. J Polym Sci Pol Chem,1974,12:121−131. doi: 10.1002/pol.1974.170120111
    [103] 张柯. 环氮化合物与二氧化碳共聚物的合成及温度/pH双敏性的研究[D]. 郑州: 郑州大学, 2009

    ZHANG Ke. Study on synthesis of copolymers from cyclonitrous compounds and carbon dioxide and the temperature /pH dual sensitivity of them[D]. Zhengzhou: Zhengzhou University, 2009.
    [104] 彭汉, 陈立班, 杨淑英, 苏跃. 二氧化碳-环氧丙烷-甲苯二异氰酸酯的三元共聚[J]. 应用化学,1991,8(1):78−81.

    PENG Han, CHEN Li-ban, YANG Shu-ying, SU Yue. Terpolymerization of CO2, propylene oxide and toluene diisocyanate[J]. Chin J Appl Chem,1991,8(1):78−81.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  984
  • HTML全文浏览量:  272
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-16
  • 网络出版日期:  2021-08-24
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回