留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焦炭-NO异相还原的密度泛函理论研究进展

陈晓淇 朱晓 齐建荟 牛胜利 韩奎华

陈晓淇, 朱晓, 齐建荟, 牛胜利, 韩奎华. 焦炭-NO异相还原的密度泛函理论研究进展[J]. 燃料化学学报(中英文), 2022, 50(3): 257-267. doi: 10.1016/S1872-5813(21)60148-2
引用本文: 陈晓淇, 朱晓, 齐建荟, 牛胜利, 韩奎华. 焦炭-NO异相还原的密度泛函理论研究进展[J]. 燃料化学学报(中英文), 2022, 50(3): 257-267. doi: 10.1016/S1872-5813(21)60148-2
CHEN Xiao-qi, ZHU Xiao, QI Jian-hui, NIU Sheng-li, HAN Kui-hua. Research progress in density functional theory study of char-NO heterogeneous reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 257-267. doi: 10.1016/S1872-5813(21)60148-2
Citation: CHEN Xiao-qi, ZHU Xiao, QI Jian-hui, NIU Sheng-li, HAN Kui-hua. Research progress in density functional theory study of char-NO heterogeneous reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 257-267. doi: 10.1016/S1872-5813(21)60148-2

焦炭-NO异相还原的密度泛函理论研究进展

doi: 10.1016/S1872-5813(21)60148-2
基金项目: 山东大学青年学者未来计划(2019年度)资助
详细信息
    作者简介:

    陈晓淇:cxq98@mail.sdu.edu.cn

    通讯作者:

    E-mail: j.qi@sdu.edu.cn

    hankh@163.com

  • 中图分类号: TK16;TK114

Research progress in density functional theory study of char-NO heterogeneous reduction

Funds: The project was supported by the Shandong University Young Scholar Future Program(2019)
  • 摘要: 燃煤电站中煤炭高温燃烧时产生的氮氧化物(NOx)对环境产生严重污染,控制NOx污染物排放成为全世界的共同行动。焦炭-NO异相还原反应在燃煤过程中普遍存在,但由于焦炭复杂的化学结构和成分以及燃烧反应中气固成分,焦炭-NO异相还原反应的机理尚不明晰。本研究通过总结焦炭-NO异相还原反应机理的密度泛函理论方面的研究,从焦炭模型、NO吸附方式、反应路径和反应路径中产生的不同中间体等方面对焦炭-NO异相还原反应的机理进行综述,还分析了CO和矿物质对NO异相还原反应的影响机制,指出焦炭模型边缘的含氧官能团和活性位点对NO还原有利,不同反应路径会产生HCN、N2O和NH3等中间体,CO和催化金属能通过增加反应活性位点、降低反应能垒和提高反应速率等方式促进焦炭-NO异相还原反应,为完善NO异相还原反应机理,控制NOx排放提供理论依据。
  • FIG. 1380.  FIG. 1380.

    FIG. 1380.  FIG. 1380.

    图  1  计算步骤流程示意图

    Figure  1  Flow chart of calculation steps

    图  2  Zigzag和Armchair焦炭模型结构示意图

    Figure  2  Zigzag and armchair char model structure

    图  3  孤立和连续性的活性位点的焦炭模型结构示意图[12]

    Figure  3  Char model with isolated and contiguous active sites[12]

    图  4  不同活性位点的焦炭模型结构示意图[13]

    Figure  4  Char model with different active sites[13]

    图  5  NO三种吸附方式结构示意图

    Figure  5  Three methods of NO adsorption (grey: carbon atom, red: oxygen atom, blue: nitrogen atom, white: hydrogen atom)

    图  6  两种机理对应反应路径示意图[30]

    Figure  6  Pathways that correspond to the two mechanisms[30]

    图  7  CO促进NO异相还原反应机理图示意[43]

    Figure  7  Pathways that correspond to the two mechanisms[43]

    表  1  矿物质对焦炭-NO还原反应的催化活性

    Table  1  Catalytic activity of minerals in char-NO reaction

    Mineral elementActivation energy of char-NO
    reaction/(kJ·mol−1
    Catalytic activation energy of char-NO
    reaction/(kJ·mol−1
    Reference
    Na245.10107.90[45]
    K245.1082.00[45]
    Li
    Na
    K
    245.07
    245.07
    245.07
    124.96
    82.05
    81.84
    [46]
    [46]
    [46]
    Ca245.35109.82[48]
    Li503.90516.50[47]
    Na503.90530.60[47]
    K503.90576.70[47]
    Na148.50139.50[49]
    Ca124.4091.90[50]
    Ca76.3451.78[51]
    Na121.04100.62[52]
    Ca79.8450.30[54]
    Fe2O3199.9949.04[57]
    Cr2O3199.9961.54[57]
    FeCrO3199.9915.38[57]
    Cu132.8583.69[56]
    下载: 导出CSV
  • [1] SHEN J, ZHANG H, LIU J X, LUO L, WANG S, CHEN B, JIANG X M. Density functional and experimental study of NO/O2 on zigzag char[J]. J Environ Sci,2020,88(2):283−291.
    [2] LIU L, JIN J, LIN Y Y, HOU F X, LI S J. The effect of calcium on nitric oxide heterogeneous adsorption on carbon: A first-principles study[J]. Energy,2016,106:212−220. doi: 10.1016/j.energy.2016.02.148
    [3] LU P, HAO J T, YU W, ZHU X M, DAI X. Effects of water vapor and Na/K additives on NO reduction through advanced biomass reburning[J]. Fuel,2016,170:60−66. doi: 10.1016/j.fuel.2015.12.037
    [4] GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Prog Energy Combust Sci,2003,29(2):89−113. doi: 10.1016/S0360-1285(02)00031-X
    [5] 吕俊复, 柯希玮, 蔡润夏, 张缦, 吴玉新, 杨海瑞, 张海. 循环流化床燃烧条件下焦炭表面NOx还原机理研究进展[J]. 煤炭转化,2018,41(1):1−12. doi: 10.3969/j.issn.1004-4248.2018.01.001

    LÜ Jun-fu, KE Xi-wei, CAI Run-xia, ZHANG Man, WU Yu-xin, YANG Hai-rui, ZHANG Hai. Research progress on the kinetics of NOx reduction over chars in fluidized bed combustion[J]. Coal Convers,2018,41(1):1−12. doi: 10.3969/j.issn.1004-4248.2018.01.001
    [6] 郭思聪, 张凯霞, 刘守军, 杨颂, 杜文广, 张红霞, 上官炬, 支国瑞. 煤炭燃烧过程中大气污染物NOx形成与转化研究进展[J]. 应用化工,2020,49(12):3205−3212+3245. doi: 10.3969/j.issn.1671-3206.2020.12.051

    GUO Si-cong, ZHANG Kai-xia, LIU Shou-jun, YANG Song, DU Wen-guang, ZHANG Hong-xia, SHANGGUAN Ju, ZHI Guo-rui. Progresses of research on the formation and transformation of NOx as atmospheric pollutant during coal burning[J]. Appl Chem Ind,2020,49(12):3205−3212+3245. doi: 10.3969/j.issn.1671-3206.2020.12.051
    [7] 黄澈. O2/CO2燃烧过程中煤氮转化机理的实验研究和量子化学计算[D]. 扬州: 扬州大学, 2016.

    HUANG Che. Experimental study and quantum chemistry calculation on fuel nitrogen conversion mechanism under O2/CO2 combustion[D]. Yangzhou: Yangzhou University, 2016.
    [8] 田向红. 焦炭氧化的密度泛函理论研究[D]. 郑州: 郑州大学, 2019.

    TIAN Xiang-hong. Study on coke oxidation with density functional theory[D]. Zhengzhou: Zhengzhou University, 2019.
    [9] 周远松, 高凤雨, 唐晓龙, 易红宏, 孟婧轩. 金属氧化物催化CO还原NO的研究进展[J]. 化工进展,2019,38(11):4941−4948.

    ZHOU Yuan-song, GAO Feng-yu, TANG Xiao-long, YI Hong-hong, MENG Jing-xuan. Research progress on NO reduction by CO over metal oxide catalysts[J]. Chem Ind Eng Prog,2019,38(11):4941−4948.
    [10] PERRY S T, HAMBLY E M, FLETCHER T H, SOLUM M S, POGMIRE R J. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization[J]. Proc Combust Inst,2000,28(2):2313−2319. doi: 10.1016/S0082-0784(00)80642-6
    [11] GARCIA-FERNANDEZ C, PICAUD S, RAYEZ M T, RUBAYO-SONEIRA J. First-principles study of the interaction between NO and large carbonaceous clusters modeling the soot surface[J]. J Phys Chem A,2014,118(8):1443−1450. doi: 10.1021/jp412217q
    [12] ZHANG H, LIU J X, WANG X Y, LUO L, JIANG X M. DFT study on the C(N)-NO reaction with isolated and contiguous active sites[J]. Fuel,2017,203:715−724.
    [13] CHEN P, GU M Y, HUANG X Y, WANG M M, LIN Y Y, CHEN G. DFT study on the C-NO coupling reaction with different active sites[J]. Combust Sci Technol,2019,(3):1−20.
    [14] 陈萍, 顾明言, 林郁郁, 严大炜, 黄庠永. 含酮基团对煤焦异相还原NO的影响[J]. 燃料化学学报,2018,46(5):521−528. doi: 10.3969/j.issn.0253-2409.2018.05.002

    CHEN Ping, GU Ming-yan, LIN Yu-yu, YAN Da-wei, HUANG Xiang-yong. Effect of ketone group on heterogeneous reduction of NO by char[J]. J Fuel Chem Technol,2018,46(5):521−528. doi: 10.3969/j.issn.0253-2409.2018.05.002
    [15] 陈萍, 李计划, 顾明言, 陈光. 无氧/低氧环境中zigzag型焦炭N的迁移转化特性[J]. 燃料化学学报,2020,48(8):920−928. doi: 10.3969/j.issn.0253-2409.2020.08.003

    CHEN Ping, LI Ji-hua, GU Ming-yan, CHEN Guang. Migration and transformation characteristics of zigzag char-N in lean oxygen environment[J]. J Fuel Chem Technol,2020,48(8):920−928. doi: 10.3969/j.issn.0253-2409.2020.08.003
    [16] ZHANG H, JIANG X M, LIU J X, SHEN J. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energy Convers Manag,2014,83:167−176.
    [17] ZHANG H, LUO L, LIU J X, JIAO A Y, LIU J G. JIANG X M. Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state[J]. Energy,2019,189:116286−116291. doi: 10.1016/j.energy.2019.116286
    [18] ZHAO T, SONG W L, FAN C G, LI S G, GLARBORG P, YAO X Q. Density functional theory study of the role of an carbon-oxygen single bond group in the NO-char reaction[J]. Energy Fuels,2018,32(7):7734−7744. doi: 10.1021/acs.energyfuels.8b01124
    [19] JIAO A Y, ZHANG H, LIU J X, SHEN J, JIANG X M. The role of CO played in the nitric oxide heterogeneous reduction: A quantum chemistry study[J]. Energy,2017,141(PT. 2):1538−1546.
    [20] 朱恒毅. 煤燃烧过程中氮转化机理的量子化学研究[D]. 北京: 华北电力大学, 2016.

    ZHU Heng-yi. Quantum chemistry research on nitrogen conversion mechanism during the combustion process of coal[D]. Beijing: North China Electric Power University, 2016.
    [21] 朱恒毅, 孙保民, 信晶, 尹书剑, 肖海平. 富氧燃烧环境下CO对煤焦异相还原NO的量子化学研究[J]. 煤炭学报,2015,40(7):1641−1647.

    ZHU Heng-yi, SUN Bao-min, XIN Jing, YIN Shu-jian, XIAO Hai-ping. Quantum chemistry research on NO heterogeneous reduction by char with the participation of CO under oxy-fuel combustion atmosphere[J]. J China Coal Soc,2015,40(7):1641−1647.
    [22] 许紫阳, 岳爽, 王春波, 刘瑞琪. 焦炭催化CO还原NO的反应机理研究[J]. 燃料化学学报,2020,48(3):266−274. doi: 10.3969/j.issn.0253-2409.2020.03.002

    XU Zi-yang, YUE Shuang, WANG Chun-bo, LIU Rui-qi. Reaction mechanism of NO reduction with CO catalyzed by char[J]. J Fuel Chem Technol,2020,48(3):266−274. doi: 10.3969/j.issn.0253-2409.2020.03.002
    [23] 章勤, 张秀霞, 周俊虎, 周志军, 张彦威, 刘建忠, 岑可法. NO在焦炭表面的吸附特性[J]. 煤炭学报,2013,38(9):1651−1655.

    ZHANG Qin, ZHANG Xiu-xia, ZHOU Jun-hu, ZHOU Zhi-jun, ZHANG Yan-wei, LIU Jian-zhong, CEN Ke-fa. Characteristics of NO chemisorption on surface of char[J]. J China Coal Soc,2013,38(9):1651−1655.
    [24] 信晶, 孙保民, 朱恒毅, 尹书剑, 张振星, 钟亚峰. 煤焦边缘模型异相还原NO的Mayer键级变化分析[J]. 煤炭学报,2014,39(4):771−775.

    Xin Jing, Sun Bao-min, Zhu Heng-yi, YIN Shu-jian, ZHANG Zhen-xing, ZHONG Ya-feng. Variation analysis of Mayer bond order during the heterogeneous reduction reaction between NO and char edge models[J]. J China Coal Soc,2014,39(4):771−775.
    [25] 信晶. 煤焦-NO反应过程中氮转化机理与试验研究[D]. 北京: 华北电力大学, 2015.

    XIN Jing. Nitrogen conversion mechanism and experimental study during the reaction process of char-NO[D]. Beijing: North China Electric Power University, 2015.
    [26] JIAO A Y, JIANG X M, LIU J X, MA Y, ZHANG H. Density functional theory investigation on the catalytic reduction of NO by CO on the char surface: the effect of iron[J]. Environ Sci Technol,2020,54(4):2422−2428. doi: 10.1021/acs.est.9b07081
    [27] ZHANG H, JIANG X M, LIU J X, SHEN J. New insights into the heterogeneous reduction reaction between NO and char-bound nitrogen[J]. Ind Eng Chem Res,2014,53(15):6307−6315. doi: 10.1021/ie403920j
    [28] HUANG X Y, ZHANG C B, LI X C, HUANG C, PAUL R. Study on NO heterogeneous reduction mechanism under gasification condition[J]. J Nanomater,2016,2016:1−8.
    [29] ZHANG H, LIU J X, SHEN J, JIANG X M. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy,2015,82:312−321. doi: 10.1016/j.energy.2015.01.040
    [30] ZHOU Z, ZHANG X, ZHOU J, LIU J, CEN K. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energ Source Part A,2014,36(2):158−166. doi: 10.1080/15567036.2010.506477
    [31] CHAMBRION P, ORIKASA H, SUZUKI T, KYOTANI T, TOMITA A. A study of the C-NO reaction by using isotopically labelled C and NO[J]. Fuel,1997,76(6):493−498. doi: 10.1016/S0016-2361(96)00224-4
    [32] THOMAS K M. The release of nitrogen oxides during char combustion[J]. Fuel,1997,76(6):457−473. doi: 10.1016/S0016-2361(97)00008-2
    [33] CHAMBRION P, KYOTANI T, TOMITA A. Role of N-containing surface species on NO reduction by carbon[J]. Energy Fuels,1998,12(2):416−421. doi: 10.1021/ef970182r
    [34] 张秀霞, 周志军, 周俊虎, 刘建忠, 岑可法. 煤粉再燃中煤焦异相还原NO机理的量化研究[J]. 燃烧科学与技术,2011,17(2):155−159.

    ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of heterogeneous reduction mechanisms of NO on the surface of char during pulverized coal reburning[J]. J Combust Sci Technol,2011,17(2):155−159.
    [35] 陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁. 含氮煤焦还原NO反应路径研究[J]. 燃料化学学报,2019,47(3):279−286.

    CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol,2019,47(3):279−286.
    [36] ARENILLAS A, ARIAS B, RUBIERA F, PIS J J, LÓPEZ R, CAMPOMANES P, PEVIDA C, MENÉNDEZ M I. Heterogeneous reaction mechanisms of the reduction of nitric oxide on carbon surfaces: A theoretical analysis[J]. Theor Chem Acc,2010,127(1-2):95−108. doi: 10.1007/s00214-009-0708-8
    [37] OYARZÚN A M, RADOVIC L R, KYOTANI T. An update on the mechanism of the graphene-NO reaction[J]. Carbon,2015,86:58−68. doi: 10.1016/j.carbon.2015.01.020
    [38] OYARZÚN A M, SALGADO-CASANOVA A J, CARCÍA-CARMONA X A, RADOVIC L R. Kinetics of oxygen transfer reactions on the graphene surface: Part I. NO vs. O2[J]. Carbon,2016,99:472−484. doi: 10.1016/j.carbon.2015.12.005
    [39] 张秀霞. 焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发[D]. 杭州: 浙江大学, 2012.

    ZHANG Xiu-xia. Nitrogen conversion mechanism during coke combustion and development of low NOx combustion technology[D]. Hangzhou: Zhejiang University, 2012.
    [40] 张秀霞, 周志军, 周俊虎, 姜树栋, 刘建忠, 岑可法. N2O在焦炭表面异相生成和分解机理的密度泛函理论研究[J]. 燃料化学学报,2011,39(11):806−811. doi: 10.3969/j.issn.0253-2409.2011.11.002

    ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, JIANG Shu-dong, LIU Jian-zhong, CEN Ke-fa. A density functional study of heterogeneous formation and decomposition of N2O on the surface of char[J]. J Fuel Chem Technol,2011,39(11):806−811. doi: 10.3969/j.issn.0253-2409.2011.11.002
    [41] STANMORE B R, TSCHAMBER V, BRILHAC J F. Oxidation of carbon by NOx, with particular reference to NO2 and N2O[J]. Fuel,2008,87(2):131−146. doi: 10.1016/j.fuel.2007.04.012
    [42] SØRENSEN C O, JOHNSSON J E, JENSEN A. Reduction of NO over wheat straw char[J]. Energy Fuels,2001,15(6):1359−1368. doi: 10.1021/ef000223a
    [43] JIAO A Y, ZHANG H, LIU J X, JIANG X M. Quantum chemical and kinetics calculations for the NO reduction with char(N): Influence of the carbon monoxide[J]. Combust Flame,2018,196:377−385.
    [44] ZHANG H, JIANG X M, LIU J X. Updated effect of carbon monoxide on the interaction between NO and char bound nitrogen: A combined thermodynamic and kinetic study[J]. Combust Flame,2020,220:107−118. doi: 10.1016/j.combustflame.2020.06.032
    [45] WEN Z C, WANG Z H, ZHOU J H, CEN K F. Quantum chemical study on the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process[J]. J Zhejiang Univ-Sci A,2009,10(3):423−433. doi: 10.1631/jzus.A0820345
    [46] 温正城, 周俊虎, 王智化, 岑可法. 碱金属对煤焦异相还原NO的催化机理: 量子化学研究[J]. 浙江大学学报(工学版),2008,(8):1452−1457. doi: 10.3785/j.issn.1008-973X.2008.08.033

    WEN Zheng-cheng, ZHOU Jun-hu, WANG Zhi-hua, CEN Ke-fa. Catalytic mechanism of alkali metal on NO heterogeneous reduction by char: quantum chemistry study[J]. J Zhejiang Univ-Sci (ES),2008,(8):1452−1457. doi: 10.3785/j.issn.1008-973X.2008.08.033
    [47] ZHANG X X, LIN R Y. Effect of Alkali Metal Elements on Nitric Oxide Chemisorption at the edge of Char: A DFT study[J]. Energy Procedia,2019,158:4805−4809. doi: 10.1016/j.egypro.2019.01.716
    [48] 温正城, 王智化, 周俊虎, 周志军, 刘建忠, 岑可法. 金属钙对煤焦异相还原NO催化机理的量子化学研究[J]. 燃烧科学与技术,2009,15(6):505−510. doi: 10.3321/j.issn:1006-8740.2009.06.005

    WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum Chemistry Study on Catalytic Mechanism of Ca on NO-Char Heterogeneous Reaction[J]. J Combust Sci Technol,2009,15(6):505−510. doi: 10.3321/j.issn:1006-8740.2009.06.005
    [49] 张秀霞, 吕晓雪, 伍慧喜, 谢苗, 林日亿, 周志军. 钠对焦炭非均相还原NO的微观作用机理[J]. 燃料化学学报,2020,48(6):663−673. doi: 10.3969/j.issn.0253-2409.2020.06.004

    ZHANG Xiu-xia, LÜ Xiao-xue, WU Hui-xi, XIE Miao, LIN Ri-yi, ZHOU Zhi-jun. Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char[J]. J Fuel Chem Technol,2020,48(6):663−673. doi: 10.3969/j.issn.0253-2409.2020.06.004
    [50] 张秀霞, 谢苗, 伍慧喜, 吕晓雪, 林日亿, 周志军. 钙对焦炭非均相还原NO的微观作用机理: DFT研究[J]. 燃料化学学报,2020,48(2):163−171. doi: 10.3969/j.issn.0253-2409.2020.02.005

    ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LÜ Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study[J]. J Fuel Chem Technol,2020,48(2):163−171. doi: 10.3969/j.issn.0253-2409.2020.02.005
    [51] ZHANG X, XIE M, WU H, LV X, ZHOU Z. DFT study of the effect of Ca on NO heterogeneous reduction by char[J]. Fuel,2020,265.
    [52] 李颖, 牛胜利, 路春美, 王家兴, 彭建升. 生物质再燃异相还原NO的分子模拟[J]. 燃料化学学报,2020,48(6):689−697. doi: 10.3969/j.issn.0253-2409.2020.06.007

    LI Ying, NIU Sheng-li, LU Chun-mei, WANG Jia-xing, PENG Jian-sheng. Molecular simulation study of NO heterogeneous reduction by biomass reburning[J]. J Fuel Chem Technol,2020,48(6):689−697. doi: 10.3969/j.issn.0253-2409.2020.06.007
    [53] 刘磊, 金晶, 林郁郁, 侯封校. 钙元素对焦炭表面NO吸附行为的影响: 密度泛函理论研究[J]. 燃料化学学报,2015,43(12):1414−1419. doi: 10.3969/j.issn.0253-2409.2015.12.002

    LIU Lei, JIN Jing, LIN Yu-yu, HOU Feng-xiao. Effect of calcium on the absorption of NO on char surface: A density functional theory study[J]. J Fuel Chem Technol,2015,43(12):1414−1419. doi: 10.3969/j.issn.0253-2409.2015.12.002
    [54] 王恒泽. 钙对煤粉燃烧中氮转化机理的催化影响[D]. 上海: 上海交通大学, 2019.

    WANG Heng-ze. Catalytic effect of calcium on nitrogen conversion mechanism in pulverized coal combustion[D]. Shanghai: Shanghai Jiao Tong University, 2019.
    [55] YANG J C, YUAN S L, WANG S N, YANG M T, SHEN B X, ZHANG Q, ZHANG Z K, WANG F M, XU L F, WANG Z Z. Density functional theory study on the effect of sodium on the adsorption of NO on a char surface[J]. Energy Fuels,2020,34:8726−8731. doi: 10.1021/acs.energyfuels.0c00987
    [56] WANG Y Z, LI Y J, ZHANG W, MA X T, WANG Z Y. The effect of Cu on NO reduction by char with density functional theory in carbonation stage of calcium looping[J]. Fuel,2021,283.
    [57] 李金洋. 密度泛函理论研究金属-石墨烯催化体系对氮氧化物的还原机理[D]. 上海: 上海大学, 2019.

    LI Jin-yang. Density functional theory study on the reduction mechanism of nitrogen oxides in metal-graphene catalyst system[D]. Shanghai: Shanghai University, 2019.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1353
  • HTML全文浏览量:  250
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-08-05
  • 网络出版日期:  2021-08-31
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回