留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis

LI Feng LIAO Yun-hui ZHAO Ning XIAO Fu-kui

李枫, 廖云辉, 赵宁, 肖福魁. NaF含量对以水滑石结构为前驱体的固体碱催化剂F-Ca-Mg-Al及碳酸二甲酯合成的影响[J]. 燃料化学学报(中英文), 2022, 50(1): 80-89. doi: 10.1016/S1872-5813(21)60165-2
引用本文: 李枫, 廖云辉, 赵宁, 肖福魁. NaF含量对以水滑石结构为前驱体的固体碱催化剂F-Ca-Mg-Al及碳酸二甲酯合成的影响[J]. 燃料化学学报(中英文), 2022, 50(1): 80-89. doi: 10.1016/S1872-5813(21)60165-2
LI Feng, LIAO Yun-hui, ZHAO Ning, XIAO Fu-kui. The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 80-89. doi: 10.1016/S1872-5813(21)60165-2
Citation: LI Feng, LIAO Yun-hui, ZHAO Ning, XIAO Fu-kui. The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 80-89. doi: 10.1016/S1872-5813(21)60165-2

NaF含量对以水滑石结构为前驱体的固体碱催化剂F-Ca-Mg-Al及碳酸二甲酯合成的影响

doi: 10.1016/S1872-5813(21)60165-2
详细信息
  • 中图分类号: O643

The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis

Funds: The project was supported by the National Natural Science Foundation of China (21802158)
More Information
  • 摘要: 以碳酸丙烯(PC)和甲醇为原料,经酯交换反应合成的多功能、环保的碳酸二甲酯(DMC)是一种绿色、节能的合成方法。CaO固体碱催化剂对该反应具有良好的催化性能,但其再生性不理想。以F-Ca-Mg-Al水滑石(LDHs)为原料,制备了一系列不同NaF用量的固体碱催化剂,并对其进行了表征和酯交换反应测试。与不加氟的FCMA-0催化剂相比,经氟改性后的催化剂的比表面积、碱量、催化活性等性能均有明显提高。催化活性由高到低依次为:FCMA-0.8 > FCMA-0.4 > FCMA-1.2 > FCMA-1.6 > FCMA-0,这与总碱位量和强碱位量一致。FCMA-0.8催化剂活性最好,与纯CaO催化剂的相当,PC转化率为66.8%,DMC选择性为97.4%,DMC收率为65.1%。在10次循环使用后,FCMA-0.8催化剂的DMC收率仅下降3.9% (CaO催化剂下降33.2%)。FCMA-0.8在PC与甲醇酯交换制DMC方面具有良好的工业应用前景。
  • FIG. 1240.  FIG. 1240.

    FIG. 1240. 

    Figure  1  XRD patterns of (a) FCMAP-n precursors and (b) FCMA-n catalysts

    Figure  2  TG-DTG curves of FMCAP-n

    Figure  3  SEM images of (a) FCMAP-n and (b) FCMA-n

    Figure  4  CO2-TPD profiles of FCMA-n catalysts

    Figure  5  Catalytic performance of the catalysts

    reaction conditions: (a): catalyst weight = 2% of total reactants, 333 K, 2 h; (b): FCMA-0.8 catalyst, n(methanol)/n(PC) = 12333 K; (c), (d): n(methanol)/n(PC) = 12, catalyst weight = 2% of total reactants, 333 K, 2 h

    Figure  6  Correlation between (a): the DMC yield and the amount of strong basic sites; (b): the DMC yield and the amount of total basic sites; (c): the PC conversion and the amount of strong basic sites; (d): the PC conversion and the amount of total basic sites

    reaction conditions: n(methanol) / n(PC) = 12, catalyst weight = 2% of total reactants, 333 K, 2 h

    Figure  7  (a) XRD patterns and (b) CO2-TPD profiles of the fresh and used FCMA-0.8 catalysts

    Table  1  Structure parameters and basicity of the FCMA-n catalysts

    CatalystSBET/ (m2·g−1)vpore/ (cm3·g−1)CO2 uptake/ (mmol·g−1)Total basic amount/ (mmol·g−1)
    αβγδ
    FCMA-042.30.300.090.230.540.191.05
    FCMA-0.448.20.390.240.240.680.471.63
    FCMA-0.855.60.410.230.250.720.531.73
    FCMA-1.245.30.380.270.170.650.351.44
    FCMA-1.644.10.320.200.210.580.391.38
    下载: 导出CSV

    Table  2  Composition of FCMA-n catalysts

    CatalystComposition/ (mol %)F/Ca (atomic ratio)
    CaMgAl
    FCMA-050.9 (50.5)16.9 (16.7)32.2 (32.8)0
    FCMA-0.451.5 (50.9)17.2 (17.1)31.3 (32.0)0.38 (0.38)
    FCMA-0.852.8 (51.4)17.6 (17.5)29.6 (31.1)0.75 (0.76)
    FCMA-1.251.4 (50.8)17.1 (17.0)31.5 (32.2)1.14 (1.14)
    FCMA-1.651.3 (50.7)17.0 (16.9)31.7 (32.4)1.55 (1.54)
    the values outside and inside the parentheses were obtained by XPS and ICP measurements, respectively
    下载: 导出CSV

    Table  3  Catalytic activity and recyclability over Ca-based solid basic catalyst

    SamplePC conversion/%DMC selectivity/%DMC yield/%DMC yield decrease/%*References
    CaO68.8 (35.5)95.665.8 (32.6)33.2 (10)[17]
    CA-359.910.9 (4)[18]
    CA-253.7 (41.9)92.849.84.8 (4),
    12.6 (10)
    [16,17]
    Mg-CA55.3 (52.6)96.3 (92.5)53.3 (48.6)4.7 (10)[16]
    CA-F65.9(60.1)95.362.85.6 (10)[17]
    FCMA-0.866.897.465.13.9 (10)this work
    reaction conditions: n(methanol) / n(PC) = 12, catalyst weight = 2% of total reactants, 333 K, 2 h
    −: data were not reported in the literature,
    *: data in the parenthesis stand for the recycle times,
    other data in the parenthesis stand for the corresponding values after 10 times recycles
    下载: 导出CSV

    Table  4  Elemental compositions of the fresh and used FCMA-0.8 catalysts

    CatalystBulk compositions/mol %
    Ca aMg aAl aF bCa∶Mg∶AlF∶Ca
    Fresh FCMA-0.8 catalyst36.912.622.328.22.93∶1∶1.770.76
    Used FCMA-0.8 catalyst35.112.025.027.92.92∶1∶2.080.79
    a: determined by the ICP, b: determined by the ionic chromatography
    下载: 导出CSV
  • [1] TUNDO P, SELVA M. The chemistry of dimethyl carbonate[J]. ACC Chem Res,2002,35(9):706−716. doi: 10.1021/ar010076f
    [2] CROCELLA V, TABANELLI T, VITILLO J. G, COSTENARO D, BISIO C, CAVANI F, BORDIGA S. A multi-technique approach to disclose the reaction mechanism of dimethyl carbonate synthesis over amino-modified SBA-15 catalysts[J]. Appl Catal B: Environ,2017,211:323−336. doi: 10.1016/j.apcatb.2017.04.013
    [3] TUNDO P, MUSOLINO M, ARICO F. The reactions of dimethyl carbonate and its derivatives[J]. Green Chem,2018,20(1):28−85. doi: 10.1039/C7GC01764B
    [4] WANG D F, ZHANG X L, MA J, YU H W, SHEN J Z, WEI W. La-modified mesoporous Mg-Al mixed oxides: effective and stable base catalysts for the synthesis of dimethyl carbonate from methyl carbamate and methanol[J]. Catal Sci Technol,2016,6(5):1530−1545. doi: 10.1039/C5CY01712B
    [5] HUANG S Y, YAN B, WANG S P, MA X B. Recent advances in dialkyl carbonates synthesis and applications[J]. Chem Soc Rev,2015,44(10):3079−3116. doi: 10.1039/C4CS00374H
    [6] SAADA R, KELLICI S, HEILI T, MORGAN D, SAHA B. Greener synthesis of dimethyl carbonate using a novel ceria-zirconia oxide/grapheme nanocomposite catalyst[J]. Appl Catal B: Environ,2015,168−169:353−362.
    [7] TAMBOLI A H, CHAUGULE A A, KIM H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chem Eng J,2017,323:530−544. doi: 10.1016/j.cej.2017.04.112
    [8] FIORANI G, PEROSA A, SELVA M. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables[J]. Green Chem,2018,20(2):288−322. doi: 10.1039/C7GC02118F
    [9] SRIVASTAVA R, SRINIVAS D, RATNASAMY P. Fe-Zn double-metal cyanide complexes as novel, solid transesterification catalysts[J]. J Catal,2006,241(1):34−44. doi: 10.1016/j.jcat.2006.04.002
    [10] XU J, WU H T, MA C M, XUE B, LI Y X, CAO Y. Ionic liquid immobilized on mesocellular silica foam as an efficient heterogeneous catalyst for the synthesis of dimethyl carbonate via transesterification[J]. Appl Catal A: Gen,2013,464–465:357−363.
    [11] MURUGAN C, BAJAJ H C, JASRA R V. Transesterification of propylene carbonate by methanol using KF/Al2O3 as an efficient base catalyst[J]. Catal Lett,2010,137:224−231. doi: 10.1007/s10562-010-0348-6
    [12] GAO Y, XU C. Synthesis of dimethyl carbonate over waste eggshell catalyst[J]. Catal Today,2012,190(1):107−111. doi: 10.1016/j.cattod.2011.12.004
    [13] WANG H, WANG M H, ZHAO N, WEI W, SUN Y H. CaO-ZrO2 solid solution: A highly stable catalyst for the synthesis of dimethyl carbonate from propylene carbonate and methanol[J]. Catal Lett,2005,105:253−257. doi: 10.1007/s10562-005-8699-0
    [14] WANG H, WANG M H, LIU S G, ZHAO N, WEI W, SUN Y H. Influence of preparation methods on the structure and performance of CaO-ZrO2 catalyst for the synthesis of dimethyl carbonate via transesterification[J]. J Mol Catal A,2006,258(1-2):308−312. doi: 10.1016/j.molcata.2006.05.050
    [15] WEI T, WANG M H, WEI W, SUN Y H, ZHONG B. Synthesis of dimethyl carbonate by transesterification over CaO/carbon composites[J]. Green Chem,2003,5(3):343−346. doi: 10.1039/b210716n
    [16] LIAO Y H, LI F, DAI X, ZHAO N, XIAO F K. Solid base catalysts derived from Ca-M-Al (M = Mg, La, Ce, Y) layered double hydroxides for dimethyl carbonate synthesis by transesterification of methanol with propylene carbonate[J]. Chin J Catal,2017,38(11):1860−1869. doi: 10.1016/S1872-2067(17)62898-5
    [17] LIAO Y H, LI F, PU Y F, WANG F, DAI X, ZHAO N, XIAO F K. Solid base catalysts derived from Ca-Al-X (X = F-, Cl- and Br-) layered double hydroxides for methanolysis of propylene carbonate[J]. RSC Adv,2018,8(2):785−791. doi: 10.1039/C7RA10832J
    [18] LIAO Y H, LI F, DAI X, ZHAO N, XIAO F K. Dimethyl carbonate synthesis over solid base catalysts derived from Ca-Al layered double hydroxides[J]. Chem Pap,2018,72:1963−1971. doi: 10.1007/s11696-018-0408-8
    [19] XU S L, CHEN Z R, ZHANG B W, YU J H, ZHANG F. Z, EVANS D G. Facile preparation of pure CaAl-layered double hydroxides and their application as a hardening accelerator in concrete[J]. Chem Eng J,2009,155(3):881−885. doi: 10.1016/j.cej.2009.08.003
    [20] KOCIK J, HAJEK M, TROPPOVA I. The factors influencing stability of Ca-Al mixed oxides as a possible catalyst for biodiesel production[J]. Fuel Process Technol,2015,134:297−302. doi: 10.1016/j.fuproc.2015.02.013
    [21] HAN M S, LEE B G, AHN B S, PARK K Y, HONG S I. Kinetics of dimethyl carbonate synthesis from ethylene carbonate and methanol using alkali-metal compounds as catalysts[J]. React Kinet Catal Lett,2001,73:33−38. doi: 10.1023/A:1013904317108
    [22] OESTREICHER V, JOBBAGY M. One pot synthesis of Mg2Al(OH)6Cl·1.5H2O layered double hydroxides: the epoxide route[J]. Langmuir,2013,29(39):12104−12109. doi: 10.1021/la402260m
    [23] ANGELESCU E, PAVEL O D, BIRJEGA R, FLOREA M, ZAVOIANU R. The impact of the “memory effect” on the catalytic activity of Mg/Al; Mg, Zn/Al; Mg/Al, Ga hydrotalcite-like compounds used as catalysts for cycloxene epoxidation[J]. Appl Catal A: Gen,2008,341(1/2):50−57. doi: 10.1016/j.apcata.2007.12.022
    [24] BEHRENS M, KASATKIN I, KUHL S, WEINBERG G. Phase-pure Cu, Zn, Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts[J]. Chem Mater,2010,22(2):386−397.
    [25] KUMAR P, SRIVASTAVA V C, MISHRA I M. Dimethyl carbonate synthesis from propylene carbonate with methanol using Cu-Zn-Al catalyst[J]. Energy Fuels,2015,29(4):2664−2675. doi: 10.1021/ef502856z
    [26] WU G D, WANG X L, WEI W, SUN Y H. Fluorine-modified Mg-Al mixed oxides: A solid base with variable basic sites and tunable basicity[J]. Appl Catal A: Gen,2010,377(1/2):107−113. doi: 10.1016/j.apcata.2010.01.023
    [27] WEI T, WANG M H, WEI W, SUN Y H, ZHONG B. Effect of base strength and basicity on catalytic behavior of solid bases for synthesis of dimethyl carbonate from propylene carbonate and methanol[J]. Fuel Process Technol,2003,83(1/3):175−182. doi: 10.1016/S0378-3820(03)00065-1
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  44
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 修回日期:  2021-07-07
  • 网络出版日期:  2021-10-12
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回