留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification

LU Yi LIANG Ruo-wen YAN Gui-yang LIANG Zhi-yu HU Wei-neng XIA Yu-zhou HUANG Ren-kun

卢沂, 梁若雯, 颜桂炀, 梁志喻, 胡未能, 夏宇宙, 黄仁昆. 溶剂热法合成用于高效光催化燃油脱氮的TiO2@MIL-101(Cr)复合材料[J]. 燃料化学学报(中英文), 2022, 50(4): 456-463. doi: 10.1016/S1872-5813(21)60170-6
引用本文: 卢沂, 梁若雯, 颜桂炀, 梁志喻, 胡未能, 夏宇宙, 黄仁昆. 溶剂热法合成用于高效光催化燃油脱氮的TiO2@MIL-101(Cr)复合材料[J]. 燃料化学学报(中英文), 2022, 50(4): 456-463. doi: 10.1016/S1872-5813(21)60170-6
LU Yi, LIANG Ruo-wen, YAN Gui-yang, LIANG Zhi-yu, HU Wei-neng, XIA Yu-zhou, HUANG Ren-kun. Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 456-463. doi: 10.1016/S1872-5813(21)60170-6
Citation: LU Yi, LIANG Ruo-wen, YAN Gui-yang, LIANG Zhi-yu, HU Wei-neng, XIA Yu-zhou, HUANG Ren-kun. Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 456-463. doi: 10.1016/S1872-5813(21)60170-6

溶剂热法合成用于高效光催化燃油脱氮的TiO2@MIL-101(Cr)复合材料

doi: 10.1016/S1872-5813(21)60170-6
详细信息
  • 中图分类号: O643.32

Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification

Funds: The project was supported by Program for Innovative Research Team in Science and Technology in Fujian Province University, Natural Science Foundation of Fujian Province (2019J05121), Research Project of Ningde Normal University (2019T03) and the Training Program Foundation for Distinguished Young Scholar by Fujian Province.
More Information
  • 摘要: 溶剂热合成技术是一种有效合成复合材料的技术。在本研究中,通过溶剂热法制备了不同比例复合的TiO2@MIL-101(Cr)复合材料。并利用这些材料进行可见光光催化燃油脱氮(吡啶)。对所得催化剂采用XRD、FT-IR、SEM、TEM、BET和DRS进行表征。通过活性实验结果可以得到,20%TiO2@MIL-101(Cr)具有良好的催化活性,在可见光光照4 h后,对吡啶的脱除率高达70%。最后,通过对HPLC-MS数据分析,得到一个光催化燃油脱氮的可能机理。
  • FIG. 1467.  FIG. 1467.

    FIG. 1467. 

    Figure  1  XRD patterns of TiO2@MIL-101(Cr), MIL-101(Cr) and TiO2

    Figure  2  SEM images of (a) MIL-101(Cr), (b) 5%MIL-101(Cr), (c) 10%MIL-101(Cr) (d) 20%MIL-101(Cr) and (e) 50%MIL-101(Cr)

    Figure  3  (a) TEM of 20%TiO2@MIL-101(Cr), ((b), (c)) HRTEM of 20%TiO2@MIL-101(Cr), (d) C, (e) Cr, (f) Ti

    Figure  4  (a) FT-IR spectra of MIL-101(Cr) and (b) comparison FT-IR spectra of MIL-101(Cr) and 20%TiO2@MIL-101(Cr)

    Figure  5  N2 adsorption/desorption isotherms curves of MIL-101(Cr) and x%TiO2@MIL-101(Cr) (x=5, 10, 20, 50)

    Figure  6  (a) UV-vis DRS spectra of TiO2 and x%TiO2@MIL-101(Cr) composites and (b) (Ahν)2 vs of (a )MIL-101 (Cr), (b) 20%TiO2@MIL-101 (Cr) and (c) 50%TiO2@MIL-101 (Cr)

    Figure  7  (a) Photocatalytic denitrogenation of pyridine over MIL-101(Cr), TiO2 and 20%TiO2@MIL-101(Cr) under visible light and black, (b) photocatalytic denitrogenation of pyridine at different content of TiO2

    Figure  8  (a) Transient photocurrent responses of MIL-101(Cr) and 20%TiO2@MIL-101(Cr), (b) Nyquist impedance plots of MIL-101(Cr) and 20%TiO2@MIL-101(Cr)

    Figure  9  High-performance liquid chromatography profiles of pyridine after different irradiation times: (a) 0 h and (b) 4 h

    Figure  10  Electron spin response spectra of various radical adducts

    Figure  11  Possible denitrogenation pathway of pyridine

    Table  1  BET surface Area, pore volume of TiO2@MIL-101(Cr) composites

    SampleBTE surface area/(m2·g−1)Pore volume/(cm3·g−1)
    MIL-101(Cr) 3341.1767 1.63
    5%TiO2@MIL-101(Cr) 2855.3102 1.49
    10%TiO2@MIL-101(Cr) 2585.1894 1.37
    20%TiO2@MIL-101(Cr) 2325.2452 1.23
    50%TiO2@MIL-101(Cr) 1742.2449 0.99
    下载: 导出CSV
  • [1] YIN C. International law regulation of offshore oil and gas exploitation[J]. Environ Impact Assess Rev,2021,88:106551.
    [2] PRADO G H C, RAO Y, KLERK A. Nitrogen removal from oil: A review[J]. Energy Fuels,2016,31(1):14−36.
    [3] BHADRA B N, BAEK Y S, CHOI C H, JHUNG S H. How neutral nitrogen-containing compounds are oxidized in oxidative-denitrogenation of liquid fuel with TiO2@carbon[J]. Phys Chem Chem Phys,2021,23(14):8368−8374. doi: 10.1039/D1CP00633A
    [4] DEESE R D, MORRIS R E, METZ A E, MYERS K M, JOHNSON K, LOEGEL T N. Characterization of organic nitrogen compounds and their impact on the stability of marginally stable diesel fuels[J]. Energy Fuels,2019,33(7):6659−6669. doi: 10.1021/acs.energyfuels.9b00932
    [5] PAUCAR N E, KIGGINS P, BLAD B, DE JESUS K, AFRIN F, PASHIKANTI S, SHARMA K. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: A review[J]. Environ Chem Lett,2021,19(2):1205−1228. doi: 10.1007/s10311-020-01135-1
    [6] JURY M R. Meteorology of air pollution in Los Angeles[J]. Atmospheric Pollut Res,2020,11(7):1226−1237. doi: 10.1016/j.apr.2020.04.016
    [7] LIANG R, HUANG R, WANG X, YING S, YAN G, WU L. Functionalized MIL-68(In) for the photocatalytic treatment of Cr(VI)-containing simulation wastewater: Electronic effects of ligand substitution[J]. Appl Surf Sci,2019,464:396−403. doi: 10.1016/j.apsusc.2018.09.100
    [8] ALVARO M, CARBONELL E, FERRER B, LLABRES I XAMENA F X, GARCIA H. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chem Eur J,2007,13(18):5106−51112. doi: 10.1002/chem.200601003
    [9] DHAKSHINAMOORTHY A, LI Z, GARCIA H. Catalysis and photocatalysis by metal organic frameworks[J]. Chem Soc Rev,2018,47(22):8134−8172. doi: 10.1039/C8CS00256H
    [10] GAO P, LIU R, HUANG H, JIA X, PAN H. MOF-templated controllable synthesis of α-Fe2O3 porous nanorods and their gas sensing properties[J]. RSC Adv,2016,6(97):94699−94705. doi: 10.1039/C6RA21567J
    [11] LI Q, WU J, HUANG L, GAO J, ZHOU H, SHI Y, PAN Q, ZHANG G, DU Y, LIANG W. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes[J]. J Mater Chem A,2018,6(25):12115−12124. doi: 10.1039/C8TA02036A
    [12] CUI Y F, JIANG W, LIANG S, ZHU L F, YAO Y W. MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties[J]. J Mater Chem A,2018,6(30):14930−14938. doi: 10.1039/C8TA00269J
    [13] FANG Y, MA Y, ZHENG M, YANG P, ASIRI A M, WANG X. Metal-organic frameworks for solar energy conversion by photoredox catalysis[J]. Coord Chem Rev,2018,373:83−115. doi: 10.1016/j.ccr.2017.09.013
    [14] YUAN S, FENG L, WANG K, PANG J, BOSCH M, LOLLAR C, SUN Y, QIN J, YANG X, ZHANG P, WANG Q, ZOU L, ZHANG Y, ZHANG L, FANG Y, LI J, ZHOU H C. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Adv Mater,2018,30(37):e1704303. doi: 10.1002/adma.201704303
    [15] XUE D-X, WANG Q, BAI J. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties[J]. Coord Chem Rev,2019,378:2−16. doi: 10.1016/j.ccr.2017.10.026
    [16] YING M, TANG R, YANG W, LIANG W, YANG G, PAN H, LIAO X, HUANG J. Tailoring electronegativity of bimetallic Ni/Fe metal-organic framework nanosheets for electrocatalytic water oxidation[J]. ACS Appl Nano Mater,2021,4(2):1967−1975. doi: 10.1021/acsanm.0c03310
    [17] LIANG R, HUANG R, YING S, WANG X, YAN G, WU L. Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100(Fe) for the degradation of pharmaceuticals and personal care products under visible light[J]. J Nano Res,2017,11(2):1109−1123.
    [18] WANG C-C, DU X-D, LI J, GUO X-X, WANG P, ZHANG J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review[J]. App Catal B: Environ,2016,193:198−216. doi: 10.1016/j.apcatb.2016.04.030
    [19] KHAN N A, JHUNG S H. Phytic acid-encapsulated MIL-101(Cr): Remarkable adsorbent for the removal of both neutral indole and basic quinoline from model liquid fuel[J]. Chem Eng J,2019,375.
    [20] GUO Q, ZHOU C, MA Z, YANG X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Adv Mater,2019,31(50):1901997. doi: 10.1002/adma.201901997
    [21] FUJIMOTO T M, PONCZEK M, ROCHETTO U L, LANDERS R, TOMAZ E. Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd[J]. Environ Sci Pollut Res Int,2017,24(7):6390−6396. doi: 10.1007/s11356-016-6494-7
    [22] LIN J Y, LEE J, WEN D O, KWON E, LIN K. Hierarchical zif-decorated nanoflower-covered 3-dimensional foam for enhanced catalytic reduction of nitrogen-containing contaminants[J]. J Colloid Interface Sci 2021, 602: 95-104.
    [23] HU W, YAN G, LIANG R, JIANG M, HUANG R, XIA Y, CHEN L, LU Y. Construction of a novel step-scheme CdS/Pt/Bi2MoO6 photocatalyst for efficient photocatalytic fuel denitrification[J]. RSC Adv,2021,11(38):23288−23300. doi: 10.1039/D1RA04417F
    [24] LIANG R, LIANG I, CHEN F, XIE P, WV Y, WANG X, YAN G, WV L. Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: High performance, recyclable photocatalysts for fuel denitrification[J]. Chin J Catal,2020,41(1):188−199.
    [25] HUANG R, LIANG R, FAN H, YING S, WU L, WANG X, YAN G. Enhanced Photocatalytic fuel denitrification over TiO2/alpha-Fe2O3 nanocomposites under visible light irradiation[J]. Sci Rep,2017,7(1):7858. doi: 10.1038/s41598-017-08439-3
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  2137
  • HTML全文浏览量:  466
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 修回日期:  2021-09-23
  • 网络出版日期:  2021-10-25
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回