留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting

FANG Wei-li WANG Liang LI Chun-hu

房维丽, 王亮, 李春虎. Au-OVs-BiOBr-P25 Z-scheme光催化剂的制备及其全分解水制氢的研究[J]. 燃料化学学报(中英文), 2022, 50(4): 446-455. doi: 10.1016/S1872-5813(21)60174-3
引用本文: 房维丽, 王亮, 李春虎. Au-OVs-BiOBr-P25 Z-scheme光催化剂的制备及其全分解水制氢的研究[J]. 燃料化学学报(中英文), 2022, 50(4): 446-455. doi: 10.1016/S1872-5813(21)60174-3
FANG Wei-li, WANG Liang, LI Chun-hu. Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 446-455. doi: 10.1016/S1872-5813(21)60174-3
Citation: FANG Wei-li, WANG Liang, LI Chun-hu. Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 446-455. doi: 10.1016/S1872-5813(21)60174-3

Au-OVs-BiOBr-P25 Z-scheme光催化剂的制备及其全分解水制氢的研究

doi: 10.1016/S1872-5813(21)60174-3
详细信息
  • 中图分类号: X703

Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting

Funds: The project was supported by State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2018-k21).
More Information
  • 摘要: 本研究以金纳米粒子为电子介质,制备了具有氧空位的Au-OVs-BiOBr-P25 Z-scheme三元光催化剂。采用全分解水制氢方法评价了该三元光催化剂的光催化活性。Au-OVs-BiOBr-P25在紫外-可见照射下,产氢速率可达384 μmol/(h·g)。UV-vis-DRS和瞬态光电流谱表明,Au-OVs-BiOBr-P25光催化活性的提高主要是由于其较宽的光响应范围和有效的载体分离。此外,全分解水是通过两电子途径发生的。该研究结果为开发更高效的光催化剂提供了新的思路。
  • FIG. 1466.  FIG. 1466.

    FIG. 1466. 

    Figure  1  Synthesis process of Au-OVs-BiOBr-P25

    Figure  2  XRD patterns of BiOBr, P25, OVs-BiOBr-P25 and Au-OVs-BiOBr-P25

    Figure  3  XPS spectra of Au-OVs-BiOBr- P25 (a) survey spectra, high resolution spectra of (b) Ti 2p spectrum, (c) O 1s spectrum, (d) Bi 4f spectrum, (e) Au 4f spectrum, (f) EPR spectra of BiOBr, P25, Au-OVs-BiOBr and Au-OVs-BiOBr-P25

    Figure  4  SEM images of (a) P25, (b) BiOBr, (c-d) OVs-BiOBr- P25, (e) HRTEM image, (f) TEM image (inset is STEM) of Au-OVs-BiOBr-P25

    Figure  5  Element mapping of Au-OVs-BiOBr-P25

    Figure  6  UV-vis diffuse reflection spectra of BiOBr, P25, OVs-BiOBr-P25 and Au-OVs-BiOBr-P25

    Figure  7  Photocurrent responses of P25, BiOBr, OVs-BiOBr-P25 and Au-OVs-BiOBr-P25

    Figure  8  (a) H2 and H2O2 production over BiOBr, P25, OVs-BiOBr-P25 and Au-OVs-BiOBr-P25, (b) H2 and H2O2 production by Au-OVs-BiOBr-P25

    Figure  9  ESR response of DMPO-OH spin adduct in water of Au-OVs-BiOBr-P25 under dark and UV-visible light at N2 atmosphere

    Figure  10  Schematic mechanism of photocatalytic overall water splitting by Au-OVs-BiOBr-P25 in UV-visible light

  • [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37−38. doi: 10.1038/238037a0
    [2] LIU J, LIU Y, LIU N Y, HAN Y Z, ZHANG X, HUANG H, LIFSHITZ Y, LEE S T, ZHONG J, KANG Z H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science,2015,347(6225):970−974. doi: 10.1126/science.aaa3145
    [3] RAZIQ F, HE J X, GAN J T, HUMAYUN M, FAHEEM M B, IQBAL A, HAYAT A, FAZAL S, YI J B, ZHAO Y, DHANABALAN K, WU X Q, MAVLONOV A, ALI T, HASSAN F, XIANG X, ZU X T, SHEN H H, LI S A, QIAO L. Promoting visible-light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: Beyond the conventional 4-electron mechanism[J]. Appl Catal B: Environ,2020,270:118870. doi: 10.1016/j.apcatb.2020.118870
    [4] CAO S, CHAN T S, LU Y R, SHI X H, FU B, WU Z J, LI H M, LIU K, ALZUABI S, CHENG P, LIU M, LI T, CHEN X B, PIAO L Y. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes[J]. Nano Energy,2020,67:104287. doi: 10.1016/j.nanoen.2019.104287
    [5] WANG L C, CAO S, GUO K, WU Z J, MA Z, PIAO L Y. Simultaneous hydrogen and peroxide production by photocatalytic water splitting[J]. Chin J Catal,2019,40(3):470−475. doi: 10.1016/S1872-2067(19)63274-2
    [6] LOW J X, YU J G, JARONIEC M, WAGEH S, AL-GHAMDI A A. Heterojunction Photocatalysts[J]. Adv Mater,2017,29(20):1601694. doi: 10.1002/adma.201601694
    [7] XU Q L, ZHANG L Y, YU J G, WAGEH S, AL-GHAMDI A A, JARONIEC M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Mater Today,2018,21(10):1042−1063. doi: 10.1016/j.mattod.2018.04.008
    [8] NG B J, PUTRI L K, KONG X Y, PASBAKHSH P, CHAI S P. Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1-x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition[J]. Chem Eng J,2021,404:127030. doi: 10.1016/j.cej.2020.127030
    [9] FU R R, ZENG X Q, MA L, GAO S M, WANG Q Y, WANG Z Y, HUANG B B, DAI Y, LU J. Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2−x/BiOCl heterojunctions[J]. J Power Sources,2016,312:12−22. doi: 10.1016/j.jpowsour.2016.02.038
    [10] REN X J, GAO M C, ZHANG Y F, ZHANG Z Z, CAO X Z, WANG B Y, WANG X X. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism[J]. Appl Catal B: Environ,2020,274:119063. doi: 10.1016/j.apcatb.2020.119063
    [11] SHI M, LI G N, LI J M, JIN X, TAO X P, ZENG B, PIDKO E A, LI R G, LI C. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting[J]. Angew Chem Int Edit,2020,59(16):6590−6595. doi: 10.1002/anie.201916510
    [12] XUE C, ZHANG T X, DING S J, WEI J J, YANG G D. Anchoring tailored low-index faceted BiOBr nanoplates onto TiO2 nanorods to enhance the stability and visible-light-driven catalytic activity[J]. ACS Appl Mater Inter,2017,9(19):16091−16102. doi: 10.1021/acsami.7b00433
    [13] CHOI Y I, JEON K H, KIM H S, LEE J H, PARK S J, ROH J E, KHAN M M, SOHN Y. TiO2/BiOX (X = Cl, Br, I) hybrid microspheres for artificial waste water and real sample treatment under visible light irradiation[J]. Sep Purif Technol,2016,160:28−42. doi: 10.1016/j.seppur.2016.01.009
    [14] RASHID J, ABBAS A, CHANG L C, IQBAL A, UL HAQ I, REHMAN A, AWAN S U, ARSHAD M, RAFIQUE M, BARAKAT M A. Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin[J]. Sci Total Environ,2019,665:668−677. doi: 10.1016/j.scitotenv.2019.02.145
    [15] OU G, XU Y S, WEN B, LIN R, GE B H, TANG Y, LIANG Y W, YANG C, HUANG K, ZU D, YU R, CHEN W X, LI J, WU H, LIU L M, LI Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat Commum,2018,9:1302. doi: 10.1038/s41467-018-03765-0
    [16] RAJARAMAN TS, PARIKH S P, GANDHI V G. Black TiO2: A review of its properties and conflicting trends[J]. Chem Eng J,2020,389:123918. doi: 10.1016/j.cej.2019.123918
    [17] WANG L, LV D D, DONG F, WU X L, CHENG N Y, SCOTT J, XU X, HAO W C, DU Y. Boosting visible-light-driven photo-oxidation of BiOCl by promoted charge separation via vacancy engineering[J]. ACS Sustainable Chem Eng,2019,7(3):3010−3017. doi: 10.1021/acssuschemeng.8b04454
    [18] LI H, SHANG J, AI Z H, ZHANG L Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. J Am Chem Soc,2015,137(19):6393−6399. doi: 10.1021/jacs.5b03105
    [19] GAO Y Y, NIE W, ZHU Q H, WANG X, WANG S Y, FAN F T, LI C. The polarization effect in surface-plasmon-induced photocatalysis on Au/TiO2 nanoparticles[J]. Angew Chem Int Ed,2020,59(41):18218−18223. doi: 10.1002/anie.202007706
    [20] MA B, BI J L, LV J, KONG C C, YAN P X, ZHAO X T, ZHANG X J, YANG T, YANG Z M. Inter-embedded Au-Cu2O heterostructure for the enhanced hydrogen production from water splitting under the visible light[J]. Chem Eng J,2021,405:126709. doi: 10.1016/j.cej.2020.126709
    [21] LI X L, WANG T, TAO X Q, QIU G H, LI C, LI B X. Interfacial synergy of Pd sites and defective BiOBr for promoting the solar-driven selective oxidation of toluene[J]. J Mater Chem A,2020,8(34):17657−17669. doi: 10.1039/D0TA05733A
    [22] LIAO Y, QIAN J, XIE G, HAN Q, DANG W Q, WANG Y S, LV L L, ZHAO S, LUO L, ZHANG W, JIANG H Y, TANG J W. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts[J]. Appl Catal B: Environ,2020,273:119054. doi: 10.1016/j.apcatb.2020.119054
    [23] YU X, SHI J J, FENG L J, LI C H, WANG L. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Appl Surf Sci,2017,396:1775−1782. doi: 10.1016/j.apsusc.2016.11.219
    [24] HU X L, LI C Q, SONG J Y, ZHENG S L, SUN Z M. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light[J]. J Colloid Interf Sci,2020,574:61−73. doi: 10.1016/j.jcis.2020.04.035
    [25] XU X Y, WANG Z Y, QIAO W, LUO F T, HU J G, WANG D H, ZHOU Y. Refined Z-scheme charge transfer in facet-selective BiVO4/Au/CdS heterostructure for solar overall water splitting[J]. Int J Hydrogen Energy,2021,46(12):8531−8538. doi: 10.1016/j.ijhydene.2020.12.047
    [26] LI H B, LONG B, YE K H, CAI Y P, HE X Y, LAN Y Q, YANG Z J, JI H B. A recyclable photocatalytic tea-bag-like device model based on ultrathin Bi/C/BiOX (X = Cl, Br) nanosheets[J]. Appl Surf Sci,2020,515:145967. doi: 10.1016/j.apsusc.2020.145967
    [27] ZHU G L, LIN T Q, LU X J, ZHAO W, YANG C Y, WANG Z, YIN H, LIU Z Q, HUANG F Q, LIN J H. Black brookite titania with high solar absorption and excellent photocatalytic performance[J]. J Mater Chem A,2013,1(34):9650−9653. doi: 10.1039/c3ta11782k
    [28] WU J, LI X D, SHI W, LING P Q, SUN Y F, JIAO X C, GAO S, LIANG L, XU J Q, YAN W S, WANG C M, XIE Y. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers[J]. Angew Chem Int Ed,2018,57(28):8719−8723. doi: 10.1002/anie.201803514
    [29] XUE X L, CHEN R P, CHEN H W, HU Y, DING Q Q, LIU Z T, MA L B, ZHU G Y, ZHANG W J, YU Q, LIU J, MA J, JIN Z. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets[J]. Nano Letter,2018,18(11):7372−7377. doi: 10.1021/acs.nanolett.8b03655
    [30] GUO Y, ZHANG Y, TIAN N, HUANG H. Homogeneous {001}-BiOBr/Bi heterojunctions: Facile controllable synthesis and morphology-dependent photocatalytic activity[J]. ACS Sustainable Chem Eng,2016,4(7):4003−4012. doi: 10.1021/acssuschemeng.6b00884
    [31] BAI Y, CHEN T, WANG P Q, WANG L, YE L Q, SHI X, BAI W. Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation[J]. Solar Energy Mater Solar Cells,2016,157:406−414. doi: 10.1016/j.solmat.2016.07.001
    [32] YAO Y, SUN M X, YUAN X J, ZHU Y H, LIN X J, ANANDAN S. One-step hydrothermal synthesis of N/Ti3+ co-doping multiphasic TiO2/BiOBr heterojunctions towards enhanced sonocatalytic performance[J]. Ultrasonics Sonochemistry,2018,49:69−78. doi: 10.1016/j.ultsonch.2018.07.025
    [33] LIANG J W, LIU Y X, SI Z C, WEI G D, WENG D, KANG F Y. Graphene quantum dots piecing together into graphene on nano Au for overall water splitting[J]. Carbon,2021,178:265−272. doi: 10.1016/j.carbon.2021.02.100
    [34] ZHANG W J, HU Y, YAN C Z, HONG D C, CHEN R P, XUE X L, YANG S Y, TIAN Y X, TIE Z X, JIN Z. Surface plasmon resonance enhanced direct Z-scheme TiO2/ZnTe/Au nanocorncob heterojunctions for efficient photocatalytic overall water splitting[J]. Nanoscale,2019,11(18):9053−9060. doi: 10.1039/C9NR01732A
    [35] LIN B, YANG G D, WANG L Z. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution[J]. Angew Chem Int Ed,2019,58(14):4587−4591. doi: 10.1002/anie.201814360
    [36] CHOI C H, KIM M, KWON H C, CHO S J, YUN S, KIM H T, MAYRHOFER K J J, KIM H, CHOI M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nat Commun,2016,7:1302.
  • 加载中
图(11)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  124
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2021-09-09
  • 网络出版日期:  2021-10-30
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回