留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁、锰、铜和水杨醛缩金刚烷胺席夫碱配体原位催化5-羟甲基糠醛氧化制备5-甲酰基呋喃-2-羧酸

白继峰 程曼芳 卢虹竹 侯明波 杨雨 王景芸 周明东

白继峰, 程曼芳, 卢虹竹, 侯明波, 杨雨, 王景芸, 周明东. 铁、锰、铜和水杨醛缩金刚烷胺席夫碱配体原位催化5-羟甲基糠醛氧化制备5-甲酰基呋喃-2-羧酸[J]. 燃料化学学报(中英文), 2022, 50(4): 418-427. doi: 10.1016/S1872-5813(21)60176-7
引用本文: 白继峰, 程曼芳, 卢虹竹, 侯明波, 杨雨, 王景芸, 周明东. 铁、锰、铜和水杨醛缩金刚烷胺席夫碱配体原位催化5-羟甲基糠醛氧化制备5-甲酰基呋喃-2-羧酸[J]. 燃料化学学报(中英文), 2022, 50(4): 418-427. doi: 10.1016/S1872-5813(21)60176-7
BAI Ji-feng, CHENG Man-fang, LU Hong-zhu, HOU Ming-bo, YANG Yu, WANG Jing-yun, ZHOU Ming-dong. In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 418-427. doi: 10.1016/S1872-5813(21)60176-7
Citation: BAI Ji-feng, CHENG Man-fang, LU Hong-zhu, HOU Ming-bo, YANG Yu, WANG Jing-yun, ZHOU Ming-dong. In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 418-427. doi: 10.1016/S1872-5813(21)60176-7

铁、锰、铜和水杨醛缩金刚烷胺席夫碱配体原位催化5-羟甲基糠醛氧化制备5-甲酰基呋喃-2-羧酸

doi: 10.1016/S1872-5813(21)60176-7
基金项目: 兴辽英才计划(XLYC1902085),辽宁省自然科学基金(20170540590)和中石油创新基金(2018D-5007-0507)资助。
详细信息
    作者简介:

    白继峰,男,出生日期:1992年5月,硕士研究生

    通讯作者:

    Tel: 024-56863837, E-mail:jingyun.wang@lnpu.edu.cn

  • 中图分类号: O643.36

In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands

Funds: The project was supported by Liaoning Revitalization Talents Program (XLYC1902085), Natural Science Foundation of Liaoning Province (20170540590) and PetroChina Innovation Foundation (2018D-5007-0507).
  • 摘要: 本研究将铁、锰、铜和金刚烷胺缩水杨醛衍生的席夫碱配体组成的原位催化剂用于催化5-羟甲基糠醛(5-Hydroxymethylfurfural,简称HMF)选择性氧化制备5-甲酰基呋喃-2-羧酸(5-formyl-2-furancarboxylic acid,简称FFCA)。通过核磁共振(NMR)、红外(FT-IR)和单晶衍射对配体和配合物进行了表征,并对氧化反应时间、反应温度、MnCl2·4H2O与配体物质的量比、氧化剂和催化剂用量等反应条件进行优化,在最优化条件下,HMF转化率为100%,并且可以获得收率为52.1%的FFCA。根据反应结果对Mn金属配合物催化的HMF氧化反应过程进行了分析。
  • FIG. 1463.  FIG. 1463.

    FIG. 1463.  FIG. 1463.

    图  1  HMF氧化反应路径

    Figure  1  Reaction path of HMF oxidation

    图  2  水杨醛缩金刚烷胺席夫碱配体的合成路径

    Figure  2  Synthetic route of salicylaldehyde amantadine Schiff base ligand

    Yellow solid:1H NMR (400 MHz, CDCl3): 14.51 (s, 1H), 8.32 (s, 1H), 7.25−7.29 (m, 2H), 6.93 (d, J= 8.0 Hz, 1H), 6.83 (t, J = 8.0 Hz, 1H), 2.18 (s, 3H), 1.84 (d, J=4.0 Hz, 6H),1.78−1.68 (m, 6H); 13C NMR (400 MHZ, CDCl3): 162.4, 159.2, 132.0, 131.3, 118.9, 118.0, 117.4, 57.1, 43.0, 36.3, 29.4; FT-IR (KBr, cm−1): 1613 (w), 1210 (m)

    图  3  配合物合成路径

    Figure  3  Synthesis path of complexes

    图  4  配合物3晶体结构图

    Figure  4  Crystal structure of complex 3

    图  5  反应温度对HMF氧化反应的影响

    (1 mmol HMF, 0.05 mmol MnCl2·4H2O, 0.1 mmol ligand, 3 mmol TBHP, 4 mL DMSO, 12 h)

    Figure  5  Influence of temperature on HMF oxidation

    图  6  反应时间对HMF氧化反应的影响

    (1 mmol HMF, 0.05 mmol MnCl2·4H2O, 0.1 mmol ligand, 3 mmol TBHP, 4 mL DMSO, 90 ℃)

    Figure  6  Influence of reaction time on HMF oxidation

    图  7  金属与配体配比对HMF氧化反应的影响

    (1 mmol HMF, 3 mmol TBHP, 4 mL DMSO, 18 h, 90 ℃)

    Figure  7  Influence of molar ratio of metal and ligand on the oxidation of HMF

    图  8  氧化剂用量对HMF氧化反应的影响

    (1 mmol HMF, 3% Cat., 0.03 mmol MnCl2·4H2O, 0.03 mmol ligand, 4 mL DMSO, 18 h, 90 ℃)

    Figure  8  Influence of oxidant dosage on HMF oxidation

    图  9  金属配合物原位催化HMF氧化反应路径

    Figure  9  HMF oxidation reaction paths with in-situ catalyst of metal complexes

    表  1  配合物3的单晶数据

    Table  1  Single crystal data for complex 3

    Bond precisionC−C = 0.0065 ÅWavelength=0.71073
    Cell a=24.6241(15) b=10.3788(7) c=12.5427(8)
    alpha=90 beta=118.324(2) gamma=90
    Temperature 296 K
    calculated reported
    Volume 2821.8(3) 2821.7(3)
    Space group C2/c C2/c
    Hall group −C2yc −C2yc
    Moiety formula C34H40CuN2O2
    Sum formula C34H40CuN2O2 C34H40CuN2O2
    Mr 572.23 572.22
    Dx/(g·cm−3 1.347 1.347
    Z 4 4
    Mu/mm−1 0.808 0.808
    F000 1212.0 1212.0
    F000' 1213.65
    h, k, lmax 29, 12, 14 29, 12, 14
    Nref 2509 2503
    Tmin, tmax 0.851 0.872
    Tmin' 0.851
    Correction method= not given
    Data completeness= 0.998, theta(max)= 25.058
    R(reflections)= 0.0593(1778), wR2(reflections)= 0.1612(2503)
    S = 1.008, Npar=177
    下载: 导出CSV

    表  2  不同种类催化剂对HMF氧化反应催化性能比较

    Table  2  Comparison of different types of catalysts for oxidation of HMF

    EntryCatalystConversion/%HMFCA/%DFF/%FFCA/%FDCA/%
    1 27.1 0 2.3 2.9 0
    2 L 9.3 0 0.9 1.7 0
    3 MnCl2·4H2O 36.1 0 9.1 15.2 0
    4 FeCl3 19.8 3.3 2.0 3.4 0
    5 CuCl2·2H2O 14.8 0 2.3 7.6 0
    6 Complex 1 80.1 0 15.2 20.0 0
    MnCl2·4H2O+L 76.3 0 16.3 21.7 0
    7 Complex 2 36.3 14.5 7.8 3.9 0
    FeCl3+ L 33.7 13.0 6.6 2.7 0
    8 Complex 3 52.8 0 12.2 9.1 0
    CuCl2·2H2O + L 47.3 0 10.2 8.2 0
    Reaction condition:1 mmol HMF, 5% Cat., 0.05 mmol metal, 0.1 mmol ligand, 3 mmol TBHP, 4 mL DMSO, 12 h, 70 ℃
    下载: 导出CSV

    表  3  催化剂用量对HMF氧化的影响

    Table  3  Influence of dosage of catalyst on HMF oxidation

    Catalyst/%Conversion/%DFF/%FFCA/%FDCA/%
    1 92.7 8.2 21.5 0
    3 100 14.3 48.6 10.5
    5 100 10.2 36.4 6.1
    7 100 10.2 29.3 5.7
    10 100 10.2 29.3 5.7
    Reaction condition:1 mmol HMF, 3 mmol TBHP, 4 mL DMSO, 18 h, 90 ℃
    下载: 导出CSV

    表  4  不同溶剂对HMF氧化的影响

    Table  4  Influence of different solvents on HMF oxidation

    EntrySolventHMF/%HMFCA/%DFF/%FFCA/%FDCA/%
    1 DMF 76.4 7.7 8.3 7.5 0
    2 CH3CN 100 0 7.8 21.7 0
    3 CH3OH 60.6 0 8.8 0 0
    4 H2O 37.2 0 8.8 0 0
    5 DMSO 100 0 16.3 52.1 13.2
    Reaction condition:1 mmol HMF, 3% Cat., 3 mmol TBHP, 4 mL solvent, 18 h, 90 ℃
    下载: 导出CSV

    表  5  不同氧化剂对HMF氧化反应的影响

    Table  5  Influence of different oxidant on HMF oxidation

    OxidantConversion/%DFF/%FFCA/%FDCA/%
    O253.52.64.59.7
    H2O276.03.24.42.5
    TBHP10016.352.113.2
    Reaction condition:1 mmol HMF, 0.03 mmol MnCl2·4H2O, 0.03 mmol ligand, 3 mmol oxidation, 4 mL DMSO, 18 h, 90 ℃
    下载: 导出CSV

    表  6  不同底物氧化反应的比较

    Table  6  Comparison of different substrate oxidation reactions

    SubstrateHMFCA/%DFF/%FFCA/%FDCA/%
    HMF016.352.113.2
    DFF0067.217.9
    FFCA0082.310.6
    Reaction condition:1 mmol substrate, 0.03 mmol MnCl2·4H2O, 0.03 mmol ligand, 3 mmol oxidation, 4 mL DMSO, 18 h, 90 ℃
    下载: 导出CSV

    表  7  用各种催化剂将HMF氧化为FFCA

    Table  7  Oxidation of HMF to FFCA with various catalysts

    Catalyst typeConversion/%FFCA/%Reaction conditionsRef.
    Na3H6FeMo6O24·5H2O8275environment :alkalinity
    oxidant:30 mL/min O2
    time:8 h
    temperature:100 ℃
    [14]
    AuNPs-sPSB9982environment:alkalinity
    oxidant:2.5−3.5 MPa O2
    time:6 h
    temperature:110 ℃
    [26]
    g-C3N4/NaNbO335.831.3environment:alkalinity
    oxidant:10 mL/min O2
    time:6 h
    300 W xenon lamp, λ>400 nm
    [15]
    MnzFeyOx8337.7environment:alkalinity
    oxidant:3.0 MPa O2
    time:1.5 h
    temperature:140 ℃
    [16]
    MnCl2·4H2O+L5>9852.1environment:non alkaline
    oxidant:1.0 mL/min
    time:18 h
    temperature:90 ℃
    this work
    下载: 导出CSV
  • [1] MURPHY J D, BROWNE J, ALLEN E, GALLAGHER C. The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel[J]. Renewable Energy,2013,55(1):474−479.
    [2] LICHTENTHALER F W, PETER S. Carbohydrates as green raw materials for the chemical industry[J]. Comptes Rendus Chimie,2004,7(2):65−90. doi: 10.1016/j.crci.2004.02.002
    [3] SIANKEVICH S, SAVOGLIDIS G, FEI Z. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under mild conditions[J]. J Catal,2014,315(6):67−74.
    [4] CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev,2007,107(6):2411−2502. doi: 10.1021/cr050989d
    [5] ROMÁN-LESHKOV Y, CHHEDA J N, DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfural from fructose[J]. Dumesic Sci,2006,312(5782):1933−1937. doi: 10.1126/science.1126337
    [6] ZHAO H, HOLLADAY J E, BROWN H, ZHANG Z C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597−1600. doi: 10.1126/science.1141199
    [7] SUN Z, CHENG M X, LI Z J, TIAN J, WANG X H. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis- surfactant-combined heteropolyacid catalyst[J]. Chem Commun,2011,47(7):2176−2178. doi: 10.1039/c0cc04444j
    [8] STÅHLBERG T, FU W, WOODLEY J M, RIISAGER A. Synthesis of 5-(hydroxymethyl) furfural in ionic liquids: Paving the way to renewable chemicals[J]. ChemSusChem,2011,4(4):451−458. doi: 10.1002/cssc.201000374
    [9] LAN J, LIN J, CHEN Z, YIN G. Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts[J]. ACS Catal,2015,5(4):2035−2041. doi: 10.1021/cs501776n
    [10] PAL P, SARAVANAMURUGAN S. Recent advances in the development of 5-hydroxymethylfurfural oxidation with base (nonprecious)-metal-containing catalysts[J]. ChemSusChem,2018,12(1):145−163.
    [11] ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2, 5-furandicarboxylic acid and its derivatives[J]. ACS Catal,2015,5(11):6529−6544. doi: 10.1021/acscatal.5b01491
    [12] ZHANG C, CHANG X, ZHU L, XING Q, YOU S, QI W, SU R, HE Z. Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF[J]. Int J Biol Macromol,2019,128(1):132−139.
    [13] GANDINI A, SILVESTRE A J D, NETO C P, SOUSA A F, GOMES M, The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources[J] J Polym Sci Pol Chem, 2009, 47 (1) 295−298.
    [14] XU J J, ZHU Z G, YUAN Z L, SUN T, ZHAO Y C, REN W Z, ZHANG Z H, LÜ H Y. Selective oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancar- boxylic acid over a Fe-Anderson type catalyst[J]. J Taiwan Inst Chem E,2019,104:8−15.
    [15] ZHU Y, ZHANG Y, CHENG L, ISMAEL M, FENG Z, WU Y. Novel application of g-C3N4/NaNbO3 composite for photocatalytic selective oxidation of biomass-derived HMF to FFCA under visible light irradiation[J]. Adv Powder Technol,2020,31(3):1148−1159. doi: 10.1016/j.apt.2019.12.040
    [16] PAL P, KUMAR S, DEVI M M, SARAVANAMURUGAN S. Oxidation of 5-hydroxymethylfurfural to 5-formyl furan-2-carboxylic acid by non-precious transition metal oxide-based catalyst[J]. J Supercrit Fluids,2020,160(1):104−812.
    [17] VENTURA M, ARESTA M, DIBENEDETTO A. Selective aerobic oxidation of 5-(hydroxymethyl) furfural to 5-formyl-2-furancarboxylic acid in water[J]. ChemSusChem,2016,9(10):1096−1100. doi: 10.1002/cssc.201600060
    [18] VENTURA M, LOBEFARO F, GIGLIO E, DISTASO M, NOCITO F, DIBENEDETTO A. Selective aerobic oxidation o 5-hydroxymethylfurfural to 2, 5-diformylfuran or 2-formyl-5-furancarboxylic acid in water by using MgO·CeO2 mixed oxides as catalysts[J]. ChemSusChem,2018,11(8):1305−1315. doi: 10.1002/cssc.201800334
    [19] WANG H B. Synthesis, characterization and antibacterial activity of Schiff base containing adamantyl and Its Zinc complex[D]. Liaoning: Liaoning University, 2012.
    [20] JIN X D, WANG W C, FENG X X, BU L C, TONG J, ZHANG P, REN J K, ZHAO B X. Synthesis, characterization, crystal structure, and electrochemical property of copper(II) complexes with Schiff bases derived from 5-halogenated salicylaldehyde and amantadine[J]. J Coord Chem,2017,43(11):787−794. doi: 10.1134/S1070328417110033
    [21] SHELDRICK G M. SHELXT-integrated space-group and cry-synthesis determination[J]. Acta Crystallogr A,2015,71(1):3−8.
    [22] JIN X D, KOU L, LIANG H M, TONG J, ZHANG P, HAN G C, REN J K, ZHAO B X. Syntheses and crystal structures of three copper(II) complexes with bulky Schiff bases derived from rimantadine[J]. J Coord Chem,2016,69(22):3309−3320. doi: 10.1080/00958972.2016.1228910
    [23] KIM M, SU Y Q, FUKUOKA A, HENSEN E J M, NAKAJIMA K. Aerobic oxidation of 5-(hydroxymethyl) furfural cyclic acetal enables selective furan-2, 5-dicarboxylic acid formation with CeO2-supported gold catalyst[J]. Angew Chem Int Ed,2018,57(27):8235−8239. doi: 10.1002/anie.201805457
    [24] RAO V K, PETER S. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis[J]. Catal Today, 2012, 195(1): 144−154.
    [25] REN Y S, LIU B, ZHANG Z H, LIN J T. Silver-exchanged heteropolyacid catalyst (Ag1H2PW): An efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose[J]. J Ind Eng Chem,2015,21(25):1127−1131.
    [26] JU E G, DONG K, CHEN Z W, LIU Z, LIU C Q, HUANG Y Y, WANG Z Z, PU F, REN J S, QU X G. Copper(ii) -graphitic carbon nitride triggered synergy: Improved ros generation and reduced glutathione levels for enhanced photodynamic therapy[J]. Angew Chem Int Ed,2016,55(38):11467−11471. doi: 10.1002/anie.201605509
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  148
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 修回日期:  2021-10-12
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回