留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

催化燃烧催化剂抗硫性的研究进展

耿俊 柯权力 周文茜 王吴健 汪善虎 周瑛 卢晗锋

耿俊, 柯权力, 周文茜, 王吴健, 汪善虎, 周瑛, 卢晗锋. 催化燃烧催化剂抗硫性的研究进展[J]. 燃料化学学报(中英文), 2022, 50(5): 564-575. doi: 10.1016/S1872-5813(21)60182-2
引用本文: 耿俊, 柯权力, 周文茜, 王吴健, 汪善虎, 周瑛, 卢晗锋. 催化燃烧催化剂抗硫性的研究进展[J]. 燃料化学学报(中英文), 2022, 50(5): 564-575. doi: 10.1016/S1872-5813(21)60182-2
GENG Jun, KE Quan-li, ZHOU Wen-xi, WANG Wu-jian, WANG Shan-hu, ZHOU Ying, LU Han-feng. Research progress in the sulfur resistance of catalytic combustion catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 564-575. doi: 10.1016/S1872-5813(21)60182-2
Citation: GENG Jun, KE Quan-li, ZHOU Wen-xi, WANG Wu-jian, WANG Shan-hu, ZHOU Ying, LU Han-feng. Research progress in the sulfur resistance of catalytic combustion catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 564-575. doi: 10.1016/S1872-5813(21)60182-2

催化燃烧催化剂抗硫性的研究进展

doi: 10.1016/S1872-5813(21)60182-2
基金项目: 国家自然科学基金(22078294),浙江省自然科学基金重点项目(LZ21E080001)和浙江省公益技术项目(LGF20E080018)资助
详细信息
    作者简介:

    耿俊 等:催化燃烧催化剂抗硫性的研究进展

    通讯作者:

    Tel: 13989881725, E-mail: luhf@zjut.edu.cn

  • 中图分类号: X701

Research progress in the sulfur resistance of catalytic combustion catalysts

Funds: The project was supported by the National Natural Science Foundation of China (22078294), the Natural Science Foundation of Zhejiang Province (LZ21E080001) and the Public Welfare Technology Project of Zhejiang Province (LGF20E080018).
  • 摘要: 在实际工业环境中,废气(包括甲烷、乙烷以及VOCs)中通常会带有一些含硫物种,这些物种在氧化反应过程中会侵占催化剂表面活性位,引起催化剂的短暂物理失活。当有毒物质与主活性物种发生反应可引发永久性失活,从而造成催化剂的中毒失效。本文综述了贵金属、复合金属氧化物以及钙钛矿型催化剂应用于废气催化燃烧反应中的抗无机硫和有机硫性能,讨论分析了催化剂的中毒机理,提出了一些提高催化剂抗毒性的方法和手段,为开发具有高抗硫中毒特性的催化剂提供了一定的思路和方向。
  • FIG. 1524.  FIG. 1524.

    FIG. 1524.  FIG. 1524.

    图  1  SO2中毒的Pt-Pd/ Al2O3样品的STEM照片和EDX照片[48]

    Figure  1  STEM image and EDX-mapping of the SO2-poisoned Pt-Pd/Al2O3 sample[48]

    (with permission from Elsevier)

    图  2  载体硫酸化前后的催化燃烧活性[59]

    Figure  2  Catalytic combustion activity before and after sulfation of carrier[59]

    (with permission from Elsevier)

    图  3  Pt/CZ、Pt/CZ-10S 催化的模拟柴油废气流中C3H6和CO的转化率[59]

    Figure  3  Conversion rates of C3H6 and CO from a stream of simulated diesel exhaust catalyzed by Pt/CZ, Pt/CZ‐10S[59]

    (with permission from Elsevier)

    图  4  Pt-CoOx/3DOM-Al2O3的抗硫机理示意图[65]

    Figure  4  Schematic diagram of the anti-sulfur mechanism of Pt-CoOx/3DOM-Al2O3[65]

    (with permission from ACS Publications)

    图  5  Pd@S-1的核壳结构图及抗硫示意图[72]

    Figure  5  Pd@S-1 core-shell structure diagram and anti-sulfur schematic diagram[72]

    (with permission from Elsevier)

    图  6  DMDS催化燃烧催化剂48 h稳定性图[77]

    Figure  6  Catalysts for catalytic combustion of DMDS 48 h stability diagram[77]

    图  7  Ce0.75Gd0.25O的失活示意图[100]

    Figure  7  Schematic diagram of deactivation of Ce0.75Gd0.25O[100]

    (with permission from Elsevier)

    表  1  近期文献中双贵金属催化剂抗硫性的汇总

    Table  1  Summary of the sulfur resistance of dual precious metal catalysts in recent literature

    CatalystPreparationReaction conditionsActivity changeYear
    pristinemodified
    Pt-Pd/γ-Al2O3[48]wet impregnation0.05% CH4,8% O2
    5% H2O,0.001% SO2
    1 h,500 ℃, 30000 h−1
    87%−10%95%−66%2018
    Pt-Pd/MnLaAl11O19[49]wet impregnation10% O2,5% CH4
    3% H2O 0.1% SO2
    10000 h−1,670 ℃,5 h
    100%−83%NO change2017
    Pd-Pt/MgO/γ-Al2O3[50]incipient wetness
    impregnation
    0.0243% toluene
    0.011% SO2
    5000 h−1,11.78 L/min
    100%−20%100%−85%2021
    Pt-Pd/γ-Al2O3[51]wet impregnation0.0243% toluene
    0.011% SO2
    5000 h−1,11.78 L/min
    225−235℃NO change2021
    Pt-Pd/CeO2[52]immersion methodCO 1‰,NO 0.5‰,
    C3H6 0.5‰,O2 10% ,
    SO2 0.2‰,N2 89.78%
    activity is inhibitedminimal impact2013
    Ir-Pt/ZrO2[53]impregnation0.1% CH4
    20% O2,3% H2O,
    0.0003% SO2,80000 h−1
    100%−50%100%−85%2011
    Ru-Pt/ZrO2[54]impregnation0.1% CH4,20% O2
    3% H2O, 0.0003% SO2
    100%−71%NO change2013
    下载: 导出CSV

    表  2  复合金属氧化物催化剂抗硫性助剂的汇总

    Table  2  Summary of sulfur resistance additives for composite metal oxide catalysts

    Catalyst (additives)PreparationReaction conditionsActivity changeYear
    pristinmodified
    Cu-10Ni//γ-Al2O3(Ni)[33]ultrasound-equal volume immersion3% CH4, 0.01% SO2,
    WHSV=8000 mL/ (g·h)
    T10%=428 KT10%=387 K2018
    1WO3-CeO2-Co3O4(W)[34]Co-precipitation5% O2, 0.12% CO,
    0.02% SO2, GHSV=15000 h−1,
    70 ℃,120 min
    100%−34.1%100%−86.6%2018
    InSnOx(Sn)[79]coprecipitation1% CH4, 10% O2,3% H2O,
    0.01% SO2, GHSV= 30000 h−1
    T50%=850 KT50%=774 K2006
    SBA-CoMo(Mo)[80]one-pot synthesis0.67% CO, 1.67% O2,
    GHSV=12100 h−1, 0.045% SO2
    100%−72%NO change2020
    Cu0.5V0.5O(V)[81]sol-gel method8000 mg/m3 toluene,
    30 mg/m3 SO2, 350 ℃
    95%−20%NO change2013
    下载: 导出CSV
  • [1] LEE J E, YONG S O, TSANG D, SONG J H, PARK Y K. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review[J]. Sci Total Environ,2020,719:137405. doi: 10.1016/j.scitotenv.2020.137405
    [2] OH C, KIM J, HWANG Y J, MA M, PARK J H. Electrocatalytic methane oxidation on Co3O4- incorporated ZrO2 nanotube powder[J]. Appl Catal B: Environ,2021,283:119653. doi: 10.1016/j.apcatb.2020.119653
    [3] TOMATIS M, XU H H, HE J, ZHANG X D. Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: A review[J]. J Chem,2016,2016:8324826.
    [4] LI X, ZHANG L, YANG Z, WANG P, YAN Y, RAN J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Sep Purif Technol,2020,235:116213. doi: 10.1016/j.seppur.2019.116213
    [5] ANWER H, ALI M, LEE S, JEONG S H, PARK J. Simulating alveoli-inspired air pockets in a ZnO/NiMoO4/C3N4 catalyst filter for toluene entrapment and photodecomposition[J]. J Hazard Mater,2020,409:124497.
    [6] HAN W, DONG F, HAN W, TANG Z. A strategy to construct uniform MOFs/PAN nanowire derived bead-like Co3O4 for VOC catalytic combustion[J]. Chem Commun,2020,56(91):14307−14310. doi: 10.1039/D0CC06139E
    [7] YANG Y, WANG G, FANG D, HAN J, DONG F, YANG M. Study of the use of a Pd-Pt-based catalyst for the catalytic combustion of storage tank VOCs[J]. Int J Hydrog Energy,2020,45(43):22732−22743. doi: 10.1016/j.ijhydene.2020.06.088
    [8] MIAO C, LIU J, ZHAO J, QUAN Y. Catalytic combustion of toluene over CeO2-CoOx composite aerogels[J]. New J Chem,2020,44(27):11557−11565. doi: 10.1039/D0NJ00091D
    [9] SHI Y, WANG J, ZHOU R. Pt-support interaction and nanoparticle size effect in Pt/CeO2-TiO2 catalysts for low temperature VOCs removal[J]. Chemosphere,2021,265:129127. doi: 10.1016/j.chemosphere.2020.129127
    [10] HUANG H, XU Y, FENG Q, LEUNG D. Low temperature catalytic oxidation of volatile organic compounds: a review[J]. Catal Sci Technol,2015,5(5):2649−2669. doi: 10.1039/C4CY01733A
    [11] AREVALO R L, ASPERA S M, OTADOY R E, NAKANISHI H, KASAI H. Adsorption of CH4 and SO2 on unsupported Pd1-xMxO(101) surface[J]. Catal Lett,2020,150(7):1870−1877. doi: 10.1007/s10562-019-03093-y
    [12] KOURTELESIS M, MORAES T S, MATTOS L V, NIAKOLAS D K, NORONHA F B, VERYKIOS X. The effects of support morphology on the performance of Pt/CeO2 catalysts for the low temperature steam reforming of ethanol[J]. Appl Catal B: Environ,2020,284:119757.
    [13] CALO S V, MORGAN D J, GOLUNSKI S, TAYLOR S H, TWIGG M V. Structure sensitivity and hydration effects in Pt/TiO2 and Pt/TiO2-SiO2 catalysts for NO and propane oxidation[J]. Top Catal,2021,64:1−10.
    [14] LAI Y T, CHEN T C, LAN Y K, CHEN B S, YOU J H, YANG C M, LAI N C, WU J H, CHEN C S. Pt/SBA-15 as a highly efficient catalyst for catalytic toluene oxidation[J]. ACS Catal,2014,4(11):3824−3836. doi: 10.1021/cs500733j
    [15] 肖益鸿, 夏笑莹, 阳艳玲, 蔡国辉, 郑勇, 魏可镁. 铈锆固溶体的表面碱性对催化剂中Pd烧结性能的影响[J]. 无机化学学报,2013,29(6):1129−1134.

    XIAO Yi-hong, XIA Xiao-ying, YANG Yan-ling, CAI Guo-hui, ZHENG Yong, WEI Ke-mei. Effect of surface basicity of ceria zirconia solid solution on sintering character of Pd[J]. Chin J Inorg Chem,2013,29(6):1129−1134.
    [16] HE J, CHEN D, LI N, XU Q, LI H, HE J, LU J. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene[J]. Appl Catal B: Environ,2020,265:118560.
    [17] DING Y, WANG S, ZHANG L, LV L, XU D, LIU W, WANG S. Investigation of supported palladium catalysts for combustion of methane: The activation effect caused by SO2[J]. Chem Eng J,2019,382:122969.
    [18] ZHANG Y, GLARBORG P, JOHANSEN K, ANDSSON M P, TORP T K, JENSEN A D, CHRISTENSEN J M. A rhodium-based methane oxidation catalyst with high tolerance to H2O and SO2[J]. ACS Catal,2020,10(3):1821−1827. doi: 10.1021/acscatal.9b04464
    [19] YE C X, CHEN S, HAN F, XIE X, LVLEV S, HOUK K N, MEGGERS E. Atroposelective synthesis of axially chiral N‐Arylpyrroles by chiral‐at‐rhodium catalysis[J]. Angew Chem Int Ed,2020,59(32):13552−13556. doi: 10.1002/anie.202004799
    [20] 张金瑶, 王祖武, 余琬冰, 王兰蕙. 负载型钌催化剂的制备对甲苯催化燃烧的影响[J]. 环境科学与技术,2020,43(2):65−68.

    ZHANG Jin-yao, WANG Zu-wu, YU Wan-bing, WANG Lan-hui. Effect of preparation of supported ruthenium catalysts on toluene catalytic combustion[J]. Environ Sci Technol,2020,43(2):65−68.
    [21] 梁文俊, 朱玉雪, 石秀娟, 孙慧频, 任思达. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585–3593.

    LIANG Wen-jun, ZHU Yu-xue, SHI Xiu-juan, SUN Hui-pin, REN Si-da. Effect of Ce doping on catalytic chlorobenzene performance of Ru/TiO2 catalysts[J]. J Chem Ind Eng (China), 2020, 71(8): 3585–3593.
    [22] ZUO S, YANG P, WANG X. Efficient and environmentally friendly synthesis of AlFe-PILC-supported MnCe catalysts for benzene combustion[J]. ACS Omega,2017,2(8):5179−5186. doi: 10.1021/acsomega.7b00592
    [23] 徐晨峻, 朱秋莲, 黄金星, 胡小波, 卢晗锋. Rb2O掺杂对MnCe/ZrO2催化燃烧碳烟的性能影响[J]. 工业催化,2015,23(7):531−535. doi: 10.3969/j.issn.1008-1143.2015.07.007

    XU Chen-jun, ZHU Qiu-lian, HUANG Jin-xing, HU Xiao-bo, LU Han-feng. Effects of Rb2O doping on the activity of Mn-Ce/ZrO2 catalyst for soot combustion[J]. Ind Catal,2015,23(7):531−535. doi: 10.3969/j.issn.1008-1143.2015.07.007
    [24] 于海宁. MnOx-CeO2的协同作用及其NO氧化催化性能研究[D]. 北京: 清华大学, 2014.

    YU Hai-ning. Research on the synergistic effects between MnOx and CeO2 and NO oxidation activities of MnOx-CeO2 catalysts[D]. Beijing: Tsinghua University, 2014.
    [25] 黄明辉, 金碧瑶, 赵莲花, 孙世刚. PtNiSnO2/C的制备、表征及其电催化氧化乙醇活性[J]. 物理化学学报,2017,33(3):563−572. doi: 10.3866/PKU.WHXB201612072

    HUANG Ming-hui, JIN Bi-yao, ZHAO Lian-hua, SUN Shi-gang. Preparation and characterization of Pt-Ni-SnO2/C for ethanol oxidation reaction[J]. Acta Phys-Chim Sin,2017,33(3):563−572. doi: 10.3866/PKU.WHXB201612072
    [26] 唐嘉, 张静, 张永丽. 活性炭负载过渡金属催化剂的制备及催化性能研究[J]. 黑龙江大学自然科学学报,2016,33(1):82−88.

    TANG Jia, ZHANG Jing, ZHANG Yong-li. Study on the preparation and catalytic performances of activated carbon-supported transition metal catalysts[J]. J Nat Sci Heilongjiang Univ,2016,33(1):82−88.
    [27] 温俊峰, 刘侠. Ni-Cu/AC催化剂的制备及其催化氧化甲醇羰基化反应性能研究[J]. 科学技术与工程,2012,12(34):9400−9402. doi: 10.3969/j.issn.1671-1815.2012.34.059

    WEN Jun-feng, LIU Xia. Preparation of Ni-Cu/AC catalyst and its catalytic oxidation methanol carbonylation reaction performance[J]. Sci Technol Eng,2012,12(34):9400−9402. doi: 10.3969/j.issn.1671-1815.2012.34.059
    [28] WITOON T, CHAIPRADITGUL N, NUMPILAI T, LAPKEATSEREE V, AYODELE B V, CHENG C K, NGUAN N A, SORNCHAMNI T, LIMTRAKUL J. Highly active Fe-Co-Zn/K-Al2O3 catalysts for CO2 hydrogenation to light olefins[J]. Chem Eng Sci,2021,233:116428. doi: 10.1016/j.ces.2020.116428
    [29] RASO R, GARCĺA L, RUIZ J, OLIVA M, ARAUZ J. Aqueous phase hydrogenolysis of glycerol over Ni/Al-Fe catalysts without external hydrogen addition[J]. Appl Catal B: Environ,2021,283:119598. doi: 10.1016/j.apcatb.2020.119598
    [30] ZHU W, CHEN X, JIN J, DI X, LIANG C, LIU Z. Insight into catalytic properties of Co3O4-CeO2 binary oxides for propane total oxidation[J]. Chin J Catal,2020,41(4):679−690. doi: 10.1016/S1872-2067(19)63523-0
    [31] ARANGO-DIAZ A, CECILIA J A, MARRERO-JEREZ J, NUṄEZ P, JIMÉNEZ- JIMÉNEZ J, RODRÍGUEZ-CASTELLÓN E. Freeze-dried Co3O4-CeO2 catalysts for the preferential oxidation of CO with the presence of CO2 and H2O in the feed[J]. Ceram Int,2016,42(6):7462−7474. doi: 10.1016/j.ceramint.2016.01.151
    [32] BHUNIA A, BERGANDER K, DANILIUC C G, STUDER A. Fe‐catalyzed anaerobic Mukaiyama‐type hydration of alkenes using nitroarenes[J]. Angew Chem Int Ed,2021,60(15):8313−8320. doi: 10.1002/anie.202015740
    [33] 刘建军, 杨仲卿, 张力. Ni的引入对Cu/γ-Al2O3催化剂上含硫低浓度甲烷燃烧特性的影响[J]. 燃料化学学报,2014,42(10):1253−1258. doi: 10.3969/j.issn.0253-2409.2014.10.016

    LIU Jian-jun, YANG Zhong-qing, ZHANG Li. Effect of Ni addition on the catalytic performance of Cu /γ-Al2O3 in the combustion of lean methane containing SO2[J]. J Fuel Chem Technol,2014,42(10):1253−1258. doi: 10.3969/j.issn.0253-2409.2014.10.016
    [34] 史蕊, 李坚. 添加WO3对铈钴催化剂CO氧化性能的影响[J]. 工业催化,2018,26(3):39−44. doi: 10.3969/j.issn.1008-1143.2018.03.008

    SHI Rui, LI Jian. Effect of addition WO3 to cerium-cobalt catalysts on carbon monoxide catalytic oxidation performance[J]. Ind Catal,2018,26(3):39−44. doi: 10.3969/j.issn.1008-1143.2018.03.008
    [35] ANGELES M, GUADALUPE V-A, VICTOR S, ELIZABETH N C, RODRIGO R, FRANCISCO T, GETSEMANI M-M. Effect of the method of synthesis in the photoactivity of TiO2-Co and TiO2-CoCe materials[J]. J Nanosci Nanotechnol,2015,15(9):7272−7274. doi: 10.1166/jnn.2015.10575
    [36] 郑建东, 葛秀涛, 章守权. 钙钛矿型LaCo1-xFexO3催化剂的制备及其催化甲烷燃烧性能研究[J]. 材料导报,2012,26(14):107−110. doi: 10.3969/j.issn.1005-023X.2012.14.027

    ZHENG Jian-dong, GE Xiu-tao, ZHANG Shou-quan. Synthesis of LaCo1−xFexO3 perovskite catalysts and investigation on their catalytic activity toward methane combustion[J]. Mater Rep,2012,26(14):107−110. doi: 10.3969/j.issn.1005-023X.2012.14.027
    [37] 王炜月, 赵培培, 金凌云, 岑丙横, 陈建, 罗孟飞. 挥发性有机物燃烧催化剂的研究进展[J]. 化工进展,2020,39(S2):185−195.

    WANG Wei-yue, ZHAO Pei-pei, JIN Ling-yun, CEN Bing-heng, CHEN Jian, LUO Meng-fei. Recent advances in catalysts for volatile organic compounds combustion[J]. Chem Ind Eng Prog,2020,39(S2):185−195.
    [38] 阚家伟, 李兵, 李林, 王小军, 陈英文, 祝社民, 沈树宝. 含氯挥发性有机化合物催化燃烧催化剂的研究进展[J]. 化工进展,2016,35(2):499−505.

    KAN Jia-wei, LI Bing, LI Lin, WANG Xiao-jun, CHEN Ying-wen, ZHU She-min, SHEN Shu-bao. Advances in catalysts for catalytic combustion of chlorinated volatile organic compounds[J]. Chem Ind Eng Prog,2016,35(2):499−505.
    [39] 李红, 冯丰, 杜君臣, 郭淼鑫, 张爱敏. Pd/Al2O3甲烷燃烧催化剂研究进展[J]. 贵金属,2020,41(2):66−74. doi: 10.3969/j.issn.1004-0676.2020.02.013

    LI Hong, FENG Feng, DU Jun-chen, GUO Miao-xin, ZHANG Ai-min. Research progress of Pd/Al2O3 catalysts for methane combustion[J]. Pre Metals,2020,41(2):66−74. doi: 10.3969/j.issn.1004-0676.2020.02.013
    [40] 朱晗斐, 马磊, 李小年. 制备抗硫性负载钯甲烷低温氧化催化剂的研究进展[J]. 应用化工,2018,47(10):2231−2234+2241. doi: 10.3969/j.issn.1671-3206.2018.10.044

    ZHU Han-fei, MA Lei, LI Xiao-nian. Progress of the preparation of sulfur-tolerant palladium catalyst for catalytic oxidation of methane[J]. Appl Chem Ind,2018,47(10):2231−2234+2241. doi: 10.3969/j.issn.1671-3206.2018.10.044
    [41] WILBURN M S, EPLING W S. Sulfur deactivation and regeneration of mono- and bimetallic Pd-Pt methane oxidation catalysts[J]. Appl Catal B: Environ,2017,206:589−598. doi: 10.1016/j.apcatb.2017.01.050
    [42] KINNUNEN N M, HIRVI J T, KALLINEN K, MAUNULA T, KEENAN M, SUVANTO M. Case study of a modern lean-burn methane combustion catalyst for automotive applications: What are the deactivation and regeneration mechanisms?[J]. Appl Catal B: Environ,2017,207:114−119. doi: 10.1016/j.apcatb.2017.02.018
    [43] KRÖCHER O, WIDMER M, ELSENER M, ROTHE D. Adsorption and desorption of SOx on diesel oxidation catalysts[J]. Ind Eng Chem Res,2017,48(22):9847−9857.
    [44] MOWERY D L, MCCORMICK R L. Deactivation of alumina supported and unsupported PdO methane oxidation catalyst: the effect of water on sulfate poisoning[J]. Appl Catal B: Environ,2001,34(4):287−297. doi: 10.1016/S0926-3373(01)00222-3
    [45] DADI R K, DAYA R, KUMAR A, JOSHI S Y, AN H, CUNNINGHAM M J, CURRIER N W, YEZERETS A. A modeling and experimental study on hydrothermal aging deactivation of NO oxidation activity on Pt-Pd catalyst[J]. Appl Catal B: Environ,2020,283:119655.
    [46] NIE H, HOWE J Y, LACHKOV P T, CHIN Y H C. Chemical and structural dynamics of nanostructures in bimetallic Pt-Pd catalysts, their inhomogeneity, and their roles in methane oxidation[J]. ACS Catal,2019,9(6):5445−5461. doi: 10.1021/acscatal.9b00485
    [47] CORRO G, CANO C, FIERRO J. A study of Pt-Pd/γ-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning[J]. J Mol Catal A: Chem,2010,315(1):35−42. doi: 10.1016/j.molcata.2009.08.023
    [48] SADOKHINA N, SMEDLER G, NYLÉN U, OLOFSSON M, OLSSON L. Deceleration of SO2 poisoning on PtPd/Al2O3 catalyst during complete methane oxidation[J]. Appl Catal B: Environ,2018,236:384−395. doi: 10.1016/j.apcatb.2018.05.018
    [49] YASHNIK S A, CHESALOV Y A, ISHCHENKO A V, KAICHEV V V, ISMAGILOV Z R. Effect of Pt addition on sulfur dioxide and water vapor tolerance of Pd-Mn-hexaaluminate catalysts for high-temperature oxidation of methane[J]. Appl Catal B: Environ,2017,204:89−106. doi: 10.1016/j.apcatb.2016.11.018
    [50] YANG Y, WANG G, GE S, YANG H, LIU M, LIU M. Study on anti-sulfur dioxide poisoning of palladium-based catalyst for toluene catalytic combustion[J]. Int J Hydrog Energy,2020,46(9):6329−6340.
    [51] YANG Y, WANG G, YANG M, YANG H, LIU M, DANG F. Pt modulates the electronic structure of Pd to improve the performance of Pd-based catalytic combustion catalyst[J]. Int J Hydrog Energy,2021,46(35):18391−18400. doi: 10.1016/j.ijhydene.2021.03.028
    [52] 黄海凤, 王庐云, 漆仲华, 卢晗锋. 柴油尾气DOC催化剂Pt-Pd/CeO2的活性和抗硫性[J]. 燃料化学学报,2013,41(11):1401−1408.

    HUANG Hai-feng, WANG Lu-yun, QI Zhong-hua, LU Han-feng. Activity and sulfur resistance of Pt-Pd /CeO2 catalysts for the oxidation of diesel exhaust[J]. J Fuel Chem Technol,2013,41(11):1401−1408.
    [53] OHTSUKA H. The oxidation of methane at low temperatures over zirconia-supported Pd, Ir and Pt catalysts and deactivation by sulfur poisoning[J]. Catal Lett,2011,141(3):413−419. doi: 10.1007/s10562-010-0506-x
    [54] OHTSUKA H. Effects of Ru or Rh addition on the activity and sulfur tolerance of Pt/ZrO2 for the oxidation of methane at low temperatures[J]. Catal Lett,2013,143(10):1043−1050. doi: 10.1007/s10562-013-1056-9
    [55] HE L, YAN Y, BELLETTRE J, YUE J, LUO L. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs[J]. Renewable Sustainable Energy Rev,2020,119:109589. doi: 10.1016/j.rser.2019.109589
    [56] SU H, ZHENG Y, SUN X, SUN L, XU X F, QI C. The catalytic stability of Au/FeLaO3/Al2O3 catalyst for low temperature CO oxidation[J]. Kinet Catal,2020,61(2):304−309. doi: 10.1134/S002315842002010X
    [57] XIAO Q, WEI S, WANG W W, JIA C. The effect of hydrogenated TiO2 to the Au/TiO2 catalyst in catalyzing CO oxidation[J]. Langmuir,2021,37(11):3270−3280. doi: 10.1021/acs.langmuir.0c03167
    [58] 杨铮铮, 黎云祥, 廖运文, 李友平, 张纳. Pt/SiO2-Al2O3抗硫型柴油车尾气净化氧化催化剂的制备及性能[J]. 环境化学,2016,35(8):1682−1689. doi: 10.7524/j.issn.0254-6108.2016.08.2016011103

    YANG Zheng-zheng, LI Yun-xiang, LIAO Yun-wen, LI You-ping, ZHANG Na. Preparation and properties of the Pt/SiO2-Al2O3 sulfur resistance diesel oxidation catalyst[J]. Environ Chem,2016,35(8):1682−1689. doi: 10.7524/j.issn.0254-6108.2016.08.2016011103
    [59] GU L, CHEN X, ZHOU Y, ZHU Q, HUANG H, LU H. Propene and CO oxidation on Pt/Ce-Zr-SO42− diesel oxidation catalysts: Effect of sulfate on activity and stability[J]. Chin J Catal,2017,38(3):607−615. doi: 10.1016/S1872-2067(17)62781-5
    [60] VALECHHA D, MEGARAJAN S K, FAKEEHA A H, AL-FATESH A S, LABHASETWAR N K. Effect of SO2 on catalytic CO oxidation over nano-structured, mesoporous Au/Ce1−xZrxO2 catalysts[J]. Catal Lett,2017,147(11):2893−2900. doi: 10.1007/s10562-017-2182-6
    [61] DING Y, WANG S, ZHANG L, LV L, XU D, LIU W, WANG S. Investigation of supported palladium catalysts for combustion of methane: The activation effect caused by SO2[J]. Chem Eng J,2019,382(24):122969.
    [62] 刘雪平, 魏坤领, 潘强, 赵保林, 宋忠贤, 胡光银, 刘水侠. Pd/Al2O3催化氧化苯性能研究: Al2O3制备方法的影响[J]. 环境科学与技术,2020,43(6):145−150.

    LIU Xue-ping, WEI Kun-ling, PAN Qiang, ZHAO Bao-lin, SONG Zhong-xian, HU Guang-yin, LIU Shui-xia. Studies of Pd/Al2O3 for photocatalytic performance of benzene: Effect of preparation methods for Al2O3[J]. Environ Sci Technol,2020,43(6):145−150.
    [63] 王成. 载体制备方法对CuO/CeO2催化剂CO优先氧化性能的影响[D]. 天津: 天津大学, 2017.

    WANG Cheng. Effect of preparation method of support CuO/CeO2 catalysts on catalytic performance for CO preferential oxidation[D]. Tianjin: Tianjin University, 2017.
    [64] SHIN H, BAEK M, RO Y, SONG C, LEE K Y, SONG I K. Improvement of sulfur resistance of Pd/Ce-Zr-Al-O catalysts for CO oxidation[J]. Appl Surf Sci,2018,429(31):102−107.
    [65] WEI Y, ZHANG P, XIONG J, YU Q, WU Q, ZHAO Z, LIU J. SO2-tolerant catalytic removal of soot particles over 3D ordered macroporous Al2O3-supported binary Pt-Co oxide catalysts[J]. Environ Sci Technol,2020,54(11):6947−6956. doi: 10.1021/acs.est.0c00752
    [66] 黄海凤, 陈晓, 顾蕾, 徐琴琪, 占林军, 卢晗锋. 柴油车DOC催化剂Pt/CeZrO2载体的制备及影响[J]. 化工学报,2017,68(4):1390−1397.

    HUANG Hai-feng, CHEN Xiao, GU Lei, XU Qin-qi, ZHAN Lin-jun, LU Han-feng. Preparation and effect of Pt/CeZrO2 diesel oxidation catalysts support[J]. J Chem Ind Eng (China),2017,68(4):1390−1397.
    [67] AROSIO F, COLUSSI S, TROVARELLI A, GROPPI G. Effect of alternate CH4-reducing/lean combustion treatments on the reactivity of fresh and S-poisoned Pd/CeO2/Al2O3 catalysts[J]. Appl Catal B: Environ, 2008, 80(3/4): 335–342.
    [68] NIU Q, LI B, XU X, WANG X. Activity and sulfur resistance of CuO/SnO2/PdO catalysts supported on γ-Al2O3 for the catalytic combustion of benzene[J]. RSC Adv,2014,4(93):51280−1285. doi: 10.1039/C4RA07538B
    [69] MA L, XIE P, LU D Q, LU C S, ZHANG Q F, LI X N. The effect of barium modification on the sulfur tolerance of methane catalytic combustion over PdO/Al2O3 catalysts[J]. Adv Mater Res,2011,287−290:1685−1690.
    [70] 黄海凤, 漆仲华, 姜波, 卢晗锋. Ni掺杂对DOC催化剂Pt/Ce-Zr的改性研究[J]. 浙江工业大学学报,2014,42(4):422−425. doi: 10.3969/j.issn.1006-4303.2014.04.015

    HUANG Hai-feng, QI Zhong-hua, JIANG Bo, LU Han-feng. The modification of diesel oxidation catalyst Pt/Ce-Zr by doping nickel[J]. J Zhejiang Univ Technol,2014,42(4):422−425. doi: 10.3969/j.issn.1006-4303.2014.04.015
    [71] 黄海凤, 顾蕾, 漆仲华, 卢晗锋. Mo掺杂对柴油机氧化催化剂Pt/Ce-Zr的助催化作用[J]. 高校化学工程学报,2015,29(4):859−865. doi: 10.3969/j.issn.1003-9015.2015.04.013

    HUANG Hai-feng, GU Lei, QI Zhong-hua, LU Han-feng. Cocatalytic effects of molybdenum doping on Pt/Ce-Zr diesel oxidation catalysts[J]. J Chem Eng Chin Univ,2015,29(4):859−865. doi: 10.3969/j.issn.1003-9015.2015.04.013
    [72] ZHANG Z, SUN L, HU X, ZHANG Y, TIAN H, YANG X. Anti-sintering Pd@silicalite-1 for methane combustion: Effects of the moisture and SO2[J]. Appl Surf Sci,2019,494:1044−1054. doi: 10.1016/j.apsusc.2019.07.252
    [73] MA X, YUAN Q, JIANG J, ZHU M. Pd4S/SiO2: A sulfur-tolerant palladium catalyst for catalytic complete oxidation of methane[J]. Catalysts,2019,9(5):410. doi: 10.3390/catal9050410
    [74] KIKUGAWA M, YAMAZAKI K, KATO A, UYAMA T, TAKAHASHI N, SHIJOH H. Silver sulfate catalyst for soot oxidation with high resistance to sulfur poisoning[J]. Appl Catal A: Gen,2019,576:32−38. doi: 10.1016/j.apcata.2019.02.033
    [75] DARIF B, OJALA S, PIRAULT-ROY L, BENSITEL M, BRAHMI R, KEISKI R. Study on the catalytic oxidation of DMDS over Pt-Cu catalysts supported on Al2O3, AlSi20 and SiO2[J]. Appl Catal B: Environ,2016,181:24−33. doi: 10.1016/j.apcatb.2015.07.050
    [76] DARIF B, OJALA S, KÄRKKÄINEN M, PRONIER S, MAUNULA T, BRAHMI R, KEISKI R. Study on sulfur deactivation of catalysts for DMDS oxidation[J]. Appl Catal B: Environ,2017,206:653−665. doi: 10.1016/j.apcatb.2017.01.053
    [77] GAO J, GAO S, WEI J, ZHAO H, ZHANG J. Catalytic combustion of dimethyl disulfide on bimetallic supported catalysts prepared by the wet-impregnation method[J]. Catalysts,2019,9(12):994. doi: 10.3390/catal9120994
    [78] 钱红雅, 徐炎华, 李溪, 刘志英. CuCrOx/Al2O3的制备及催化燃烧甲苯的性能研究[J]. 环境污染与防治,2018,40(12):1400−1403.

    QIAN Hong-ya, XU Yan-hua, LI Xi, LIU Zhi-ying. Preparation and performance of CuCrOx/Al2O3 for catalytic combustion of toluene[J]. Environ Poll Control,2018,40(12):1400−1403.
    [79] LI J, FU H, FU L, HAO J. Complete combustion of methane over indium tin oxides catalysts[J]. Environ Sci Technol,2006,40(20):6455−6459. doi: 10.1021/es061629q
    [80] LIMA T M, MACEDO V D, SILVA D, CASTELBLANCO W N, PEREIRA C A, RONCOLATTO R E, GAWANDE M B, ZBOŘIL R, VARMA R S, URQUIETA-GONZÁLEZ E A. Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation[J]. Appl Catal B: Environ,2020,277:119248. doi: 10.1016/j.apcatb.2020.119248
    [81] ZHANG X, PEI Z, WU T, LU H, HUANG H. A mechanistic study of the sulfur tolerance of Cu-V mixed oxides in toluene catalytic combustion[J]. React Kinet Mech Catal,2015,116(2):467−478. doi: 10.1007/s11144-015-0912-6
    [82] 钟敏宜, 林峰桦, 王锐明, 张志丰, 廖锦东, 李树华, 梁红. 柴油车尾气净化催化剂硫中毒的研究[J]. 材料研究与应用,2008,2(4):380−382. doi: 10.3969/j.issn.1673-9981.2008.04.036

    ZHONG Min-yi, LIN Feng-hua, WANG Rui-ming, Zhang Zhi-feng, LIAO Jin-dong, LI Shu-hua, LIANG Hong. Study on the anti-sulfur-poisoning property of catalyst for soot removal from diesel exhausts[J]. Mater Res Appl,2008,2(4):380−382. doi: 10.3969/j.issn.1673-9981.2008.04.036
    [83] ZHONG L, FANG Q, LI X, ZHANG C, CHEN G. SO2 resistance of Mn-Ce catalysts for lean methane combustion: Effect of the preparation method[J]. Catal Lett,2019,149(9):3268−3278.
    [84] YANG W, LI L, FANG Y, SHAN Y, XU J, SHEN H, YU Y, GUO Y, HE H. Interfacial structure-governed SO2 resistance of Cu/TiO2 catalysts in the catalytic oxidation of CO[J]. Catal Sci Technol,2020,10(6):1661−1674. doi: 10.1039/C9CY02405K
    [85] YU D, REN Y, YU X, FAN X, WANG L, WANG R, ZHAO Z, CHENG K, CHEN Y, SOJKA Z, KOTARBA A, WEI Y, LIU J. Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2-xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2-ScienceDirect[J]. Appl Catal B: Environ,2020,285:119779.
    [86] 于迪, 彭超, 王斓懿, 于学华, 赵震. 钙钛矿氧化物催化剂的制备及其催化燃烧炭烟颗粒性能的研究进展[J]. 中国科学:化学,2020,50(12):1816−1835.

    YU Di, PENG Chao, WANG Lan-yi, YU Xue-hua, ZHAO Zhen. Research progress of the preparation of perovskite oxide catalysts and their catalytic performances for soot combustion[J]. Sci Chin: Chem,2020,50(12):1816−1835.
    [87] SUN W, WEI H, AN L, JIN C, WU H, XIONG Z, PU C, SUN C. Oxygen vacancy mediated La1−xCexFeO3−δ perovskite oxides as efficient catalysts for CWAO of acrylic acid by A-site Ce doping[J]. Appl Catal B: Environ,2019,245:20−28. doi: 10.1016/j.apcatb.2018.12.024
    [88] LIANG H, MOU Y, ZHANG H, LI S, YAO C, YU X. Sulfur resistance and soot combustion for La0.8K0.2Co1−yMnyO3 catalyst[J]. Catal Today,2016,281:477−481.
    [89] ONRUBIA-CALVO J A, PEREDA-AYO B, DE-LA-TORRE U, GONZÁLEZ-VELASCO J R. Key factors in Sr-doped LaBO3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification[J]. Appl Catal B: Environ,2017,213:198−210. doi: 10.1016/j.apcatb.2017.04.068
    [90] ZOU G, CHEN M, SHANGGUAN W. Promotion effects of LaCoO3 formation on the catalytic performance of Co-La oxides for soot combustion in air[J]. Catal Commun,2014,51:68−71. doi: 10.1016/j.catcom.2014.03.028
    [91] SUN J, ZHAO Z, LI Y, YU X, ZHAO L, LI J, WEI Y, LIU J. Synthesis and catalytic performance of macroporous La1-xCexCoO3 perovskite oxide catalysts with high oxygen mobility for the catalytic combustion of soot[J]. J Rare Earths,2020,38(6):584−593. doi: 10.1016/j.jre.2019.05.014
    [92] DA Y, ZENG L, WANG C, MAO T, CHEN R, GONG C, FAN G. Catalytic oxidation of diesel soot particulates over Pt substituted LaMn1−xPtxO3 perovskite oxides[J]. Catal Today,2019,327:73−80. doi: 10.1016/j.cattod.2018.06.007
    [93] 曹利, 曹爽, 黄学敏, 杨全. 钙钛矿型催化剂La 0.8M 0.2CoO3(M=Sr、Ce、Ba、Ca)催化燃烧VOCs的活性与抗硫性研究[J]. 环境化学,2011,30(9):1539−1545.

    CAO Li, CAO Shuang, HUANG Xue-min, YANG Quan. Activity and SO2-poisoning resistance of La0.8M0.2CoO3 (M = Sr, Ce, Ba, Ca) perovskite catalysts for VOCs catalytic combustion[J]. Environ Chem,2011,30(9):1539−1545.
    [94] SHIN H, BAEK M, KIM D H. Sulfur resistance of Ca-substituted LaCoO3 catalysts in CO oxidation[J]. Mol Catal,2019,468:148−153. doi: 10.1016/j.mcat.2019.02.020
    [95] 李晨, 舒新前, 王苏健, 邓增社, 陈通, 王鹏. La0.9Ce0.1NiO3钙钛矿型催化剂四效催化性能的研究[J]. 环境科学与技术,2017,40(3):119−122.

    LI Chen, SHU Xin-qian, WANG Su-jian, DENG Zeng-she, CHEN Tong, WANG Peng. Research on four-way diesel exhaust catalyst of La0.9Ce0.1NiO3[J]. Environ Sci Technol,2017,40(3):119−122.
    [96] 辛博, 梁美生, 王洁, 连欢. La0.7K0.3Co0.5Fe0.5O3在SO2气氛下对柴油车尾气中NO的去除性能[J]. 科学技术与工程,2018,18(14):79−84. doi: 10.3969/j.issn.1671-1815.2018.14.013

    Xin Bo, Liang Mei-sheng, Wang Jie, LIAN Huan. La0.7K0.3Co0.5Fe0.5O3 work on the removal of NO in diesel exhaust in SO2 atmosphere[J]. Sci Tech Engrg,2018,18(14):79−84. doi: 10.3969/j.issn.1671-1815.2018.14.013
    [97] 魏炜, 吴艾纯, 乔智威, 李树华, 梁红, 彭峰. 金属Sr、Fe掺杂对LaCoO3催化氧化碳烟及抗硫性能影响[J]. 无机化学学报,2020,36(1):87−96. doi: 10.11862/CJIC.2020.031

    WEI Wei, WU Ai-chun, QIAO Zhi-wei, LI Shu-hua, LIANG Hong, PENG Feng. Effect of Sr and Fe doped LaCoO3 on catalytic oxidation of soot and sulfur resistance[J]. Chin J Inorg Chem,2020,36(1):87−96. doi: 10.11862/CJIC.2020.031
    [98] GAO L, XUE Q, LIU Y, LU Y. Base-free catalytic aerobic oxidation of mercaptans for gasoline sweetening over HTLcs-derived CuZnAl catalyst[J]. AIChE J,2010,55(12):3214−3220.
    [99] YI H, ZHANG X, TANG X, ZHAO S, MA C, HAN W, SONG L. Promotional effects of transition metal modification over Al2O3 for CH3SH catalytic oxidation[J]. ChemistrySelect,2019,4(34):9901−9907. doi: 10.1002/slct.201902673
    [100] HE D, HAO H, CHEN D, LIU J, YU J, LU J, LIU F, WAN G, HE S, LUO Y. Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition[J]. Catal Today,2017,281:559−565. doi: 10.1016/j.cattod.2016.06.022
    [101] LIU J, HE D, CHEN D, HAO H, YU J, LU J, LIU F, LIU P, ZHAO Y, LUO Y. Promotional effects of rare-earth (La, Ce and Pr) modification over HZSM-5 for methyl mercaptan catalytic decomposition[J]. J Taiwan Inst Chem Eng, 2017, 80: 262–268.
    [102] HUANG H, ZHONG S, LU H, SHEN L, CHEN Y. Study on the poisoning tolerance and stability of perovskite catalysts for catalytic combustion of volatile organic compounds[J]. React Kinet Mech Catal,2010,101(2):417−427. doi: 10.1007/s11144-010-0235-6
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1400
  • HTML全文浏览量:  339
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 修回日期:  2021-11-10
  • 录用日期:  2021-11-10
  • 网络出版日期:  2021-12-04
  • 刊出日期:  2022-05-24

目录

    /

    返回文章
    返回