留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An ammonia-free denitration method: Direct reduction of NOx over activated carbon promoted by Cu-K bimetals

XIAO Rao ZHANG Jun-feng ZHAO Ling-kui

肖娆, 张俊丰, 赵令葵. 一种无氨脱硝方法:活性炭在Cu-K双金属辅助下直接还原NOx[J]. 燃料化学学报(中英文), 2022, 50(5): 628-640. doi: 10.1016/S1872-5813(21)60183-4
引用本文: 肖娆, 张俊丰, 赵令葵. 一种无氨脱硝方法:活性炭在Cu-K双金属辅助下直接还原NOx[J]. 燃料化学学报(中英文), 2022, 50(5): 628-640. doi: 10.1016/S1872-5813(21)60183-4
XIAO Rao, ZHANG Jun-feng, ZHAO Ling-kui. An ammonia-free denitration method: Direct reduction of NOx over activated carbon promoted by Cu-K bimetals[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 628-640. doi: 10.1016/S1872-5813(21)60183-4
Citation: XIAO Rao, ZHANG Jun-feng, ZHAO Ling-kui. An ammonia-free denitration method: Direct reduction of NOx over activated carbon promoted by Cu-K bimetals[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 628-640. doi: 10.1016/S1872-5813(21)60183-4

一种无氨脱硝方法:活性炭在Cu-K双金属辅助下直接还原NOx

doi: 10.1016/S1872-5813(21)60183-4
详细信息
  • 中图分类号: X511

An ammonia-free denitration method: Direct reduction of NOx over activated carbon promoted by Cu-K bimetals

Funds: The project was supported by the National Natural Science Fund of China (52070159), the Key Research and Development Program of Hunan Province in China (2019SK2017) and Hunan High-tech Industry Science and Technology Innovation Leading Plan (2021GK4061).
More Information
  • 摘要: 本研究利用等体积浸渍法制备出来一种Cu-K双金属负载活性炭,可直接用于烟气脱硝,并在较宽的温度窗口下保持良好的脱硝效果。研究还通过程序升温表面反应 (TPSRs) 以及 BET、SEM、XRD、XPS、H2-TPR、Raman 和 FT-IR 等表征手段对双金属辅助脱硝的机理进行了研究与讨论。研究结果表明,炭材料表面形成的活性官能团是重要的中间产物,在还原过程中起着关键作用。氧的加入明显促进了化学吸附和中间产物含氧官能团 C(O) 的形成,提高了NO的还原速率。双金属氧化物催化直接还原NO的效果明显,铜∶钾= 2∶1 时,在300 ℃下脱硝率可达 90%,催化活性主要来自 CuO/Cu2O 的氧化还原循环,钾抑制了铜在炭材料表面的团聚,有效提高了铜的催化效率。
  • FIG. 1531.  FIG. 1531.

    FIG. 1531. 

    Figure  1  Schematic diagram of the CharR-NOx reaction unit

    1: gas tank; 2: mass flowmeter; 3: premixer; 4: preheater; 5: thermocouple; 6: filter; 7: furnace; 8: reactor; 9: flue gas analyzer

    Figure  2  Effect of the inlet oxygen concentration on the CharR-NOx reaction

    Reaction conditions: GHSV 8000 h–1; 300–540 °C; 0.05% NO; 0–6% O2; 2.0 g samples; gas flow 600 mL/min

    Figure  3  Effects of bimetallic catalysis on the reduction rate of the CharR-NOx reactions without oxygen ((a), (c)) and aerobic ((b), (d)) environments

    Reaction conditions: GHSV 8000 h–1; 300–540 °C; 0.05% NO; 0–2% O2; 2.0 g samples; gas flow 600 mL/min

    Figure  4  Total carbon consumption of bimetallic catalytic carbon materials in the absence of oxygen (a) and oxygen (b)

    Reaction conditions: GHSV 8000 h–1; 300–540 °C; 0.05% NO; 0–2% O2; 2.0 g samples; gas flow 600 mL/min

    Figure  5  FT-IR spectra of the CSAC modification process

    Figure  6  Raman spectrogram of Cu-K bimetal supported CSAC

    Figure  7  SEM images of CSAC (a), 2Cu-K-CSAC ((b), (c)), and Cu-CSAC ((d), (e))

    Figure  8  SEM images of 2Cu-K-CSAC (a) and Cu-CSAC (b) after participation in reactions

    Figure  9  XRD patterns of CSAC loaded with different metals

    Figure  10  XRD patterns of Cu-CSAC (a) and 2Cu-K-CSAC (b) before and after the CharR-NOx reaction

    Figure  11  H2-TPR profiles of CSAC, K-CSAC and 2Cu-K-CSAC before the CharR-NOx reaction

    Figure  12  XPS of CSAC

    Figure  13  XPS of 2Cu-K-CSAC before the CharR-NOx reaction

    Figure  14  XPS of 2Cu-K-CSAC after the CharR-NOx reaction

    Figure  15  Proposed CharR-NOx reaction mechanism of NO and O2 on the carbon surface

    Figure  16  REDOX cycle of CuO/Cu2O

    Table  1  Elemental analysis of coconut-shell activated carbon

    ElementANCHSO
    Content wmass/%1.830.1994.060.7603.16
    下载: 导出CSV

    Table  2  Surface area and pore volume of CSAC obtained by BET (N2, 77 K)

    CharSBET /(m2·g−1)vMes /(cm3·g−1)vtotal /(cm3·g−1)
    CSAC841.1950.0290.457
    下载: 导出CSV

    Table  3  Cu 2p XPS curve-fitting analysis for 2Cu-K-CSAC

    MaterialCu 2p XPS curve-fitting /%Cu(Ⅱ)/ Cu(Ⅰ/0)
    Cu(Ⅱ)Cu(Ⅰ)Cu(0)
    2Cu-K-CSAC before reaction23.0756.7720.161∶3.33
    2Cu-K-CSAC after reaction27.3942.4030.211∶2.65
    下载: 导出CSV
  • [1] QIANG L, XIAO Y L, HONG W, QIAN Q H. Current situation and trend analysis of clean heating in north China[J]. Energy China,2021,1:17−22.
    [2] CHANG Z. Research on development and engineering application of key technology of denitration of central heating boiler flue gas[D]. Nanjing: Southeast University, 2018.
    [3] ZHANG X, FUNG J, LAU A, HOSSAIN, M. S. HUANG, W. Air quality and synergistic health effects of ozone and nitrogen oxides in response to China's integrated air quality control policies during 2015–2019[J]. Chemosphere,2020,268(2021):129385.
    [4] HENDRYX M, ZULLIG K J, LUO J H. Impacts of coal use on health[J]. Annu Rev Publ Health,2020,41(1):397−415. doi: 10.1146/annurev-publhealth-040119-094104
    [5] TAO Z, ZHEN H Z. Effects of nitrogen oxides and meteorological factors on ozone pollution in the ambient air of Rizhao city[J]. Energy Conserv Environ Prot,2019,2:80−81.
    [6] YUE J S, NIAN X Z. Ammonia emission without participating in the reduction reaction of denitrification[J]. Sci Manag,2019,39(6):68−75.
    [7] JIAN T, JIAN H Y, OU C, GUANG X Y. Excessive ammonia escape is another cause of aggravating atmospheric haze[J]. Energy China,2020,42(10):45−47.
    [8] YAN W, XUE J D. Ammonia pollution: the neglected culprit of smog[J]. Ecolog Econ,2017,33(6):6−9.
    [9] ZHANG Y, FENG Q, LI S, XU K, PEI Y, ZHU Y. Study on operation status of SCR denitration system in Chinese coal-fired power plants[J]. IOP Confer Ser: EES,2020,467(1):012119. doi: 10.1088/1755-1315/467/1/012119
    [10] GAO Y W, PAN W G, GUO R T, ZHEN W L, ZHANG Q, SHI C L, ZHAO X. Review of denitration by SNCR in cement kilns[J]. Adv Mater Res,2013,864–867:1474−1477.
    [11] CHEN H, LUO M, WANG Y, ZHANG Q, LIU Y. Influence of coal-fired boiler fly ash on SCR denitration catalysts and preventive measures[J]. J Combust Sci Technol,2017,23(3):200−211.
    [12] YAO Y, GUI S, YANG J, WEI J, ZHANG W, LI P, XUE F, SU J, LIU X. Cause analysis and countermeasure of blockage in urea pyrolysis denitration system of coal-fired power plant[J]. IOP Confer Ser: EES,2021,651(2):022058. doi: 10.1088/1755-1315/651/2/022058
    [13] ZHANG J. Research and application of dry flue gas denitration method for small coal-fired boiler[J]. Coal Chem Ind,2019,42(7):139−141.
    [14] KE Y. Experimental study on the purification of NOx by hot carbon reduction method[J]. Environ Prot Chem Ind,1984,3:4−47.
    [15] MJ I G, LINARES S A, RADOVIC L R, SALINAS-MARTINEZ de LECEA C. NO reduction by activated carbons. 7. Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy Fuels,1996,10(1):158−168. doi: 10.1021/ef950066t
    [16] YANG J, MESTL G, HEREIN D, SCHLGL R, FIND J. Reaction of NO with carbonaceous materials: 1. Reaction and adsorption of NO on ashless carbon black[J]. Carbon,2000,38(5):715−727. doi: 10.1016/S0008-6223(99)00150-5
    [17] SMITH R N, SWINEHART J, LESNINI D. The oxidation of cardon by nitric oxide[J]. J Phys Chem,1959,63(4):544−547.
    [18] GRZYBEK T, KLINIK J, SAMOJEDEN B, SUPRUN V, PAPP H. Nitrogen-promoted active carbons as DeNOx catalysts[J]. Catal Today,2008,137(2/4):228−234. doi: 10.1016/j.cattod.2007.11.009
    [19] WANG Y, QIN N, CUI S, MA X, PENG S. Influence of biochar composition and micro-structure on the denitration of flue gases at high temperature[J]. Appl Sci-basel,2020,10(6):1920. doi: 10.3390/app10061920
    [20] WU H X, CAI J, REN Q Q, XU J, CHU F H, LYU Q G. An efficient and economic denitration technology based on fuel pretreatment for cement cleaner production[J]. J Clean Prod,2020,272:122669. doi: 10.1016/j.jclepro.2020.122669
    [21] LIN Y T, LI Y R, XU Z C, XIONG J, ZHU T Y. Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel,2018,223(1):312−323.
    [22] LI M X, YI Z J, LI N L, LI G W, ZHI Y L KAI W Z. Preparation and characterization of activated carbon modified by ferric oxide[J]. Carbon,2017,1:16−19.
    [23] LI M X, KAI W Z. Preparation and characterization of copper oxide modified activated carbon[J]. Carbon,2017,3:24−32.
    [24] ILLAN G M J, LINARES-SOLANO A, RADOVIC L R, SALINAS-MARTINEZ de LECEA C L. NO reduction by activated carbons. 4. Catalysis by calcium[J]. Energy Fuels,1995,9(1):112−118. doi: 10.1021/ef00049a017
    [25] ILLAN G M J, LINARES-SOLANO A, SALINAS-MARTINEZ de LECEA C. NO reduction by activated carbon. 6. Catalysis by transition metals[J]. Energy Fuels,1995,9(6):976−983. doi: 10.1021/ef00054a007
    [26] ILLANGOMEZ M J, LINARESSOLANO A, RADOVIC L R. NO reduction by activated carbons. 2. Catalytic effect of potassium[J]. Fuel Energy Abstracts,1995,36(3):97−103.
    [27] SHU Y, ZHANG F, WANG F, WANG H M. Catalytic reduction of NOx by biomass-derived activated carbon supported metals[J]. Chin J Chem Eng,2018,26(10):2077−2083. doi: 10.1016/j.cjche.2018.04.019
    [28] TSCHAMBER V, BRILHAC] J F. Oxidation of carbon by NOx, with particular reference to NO2 and N2O[J]. Fuel,2008,87:131−146. doi: 10.1016/j.fuel.2007.04.012
    [29] BUENO-LÓPEZ A, SORIANO-MORA J M, GARCÍA-GARCÍA A. Study of the temperature window for the selective reduction of NOx in O2-rich gas mixtures by metal-loaded carbon[J]. Catal Commun,2006,7(9):678−684. doi: 10.1016/j.catcom.2006.02.010
    [30] LEI Z, YAN J, FANG J, SHUI H, KANG S. Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe-CaO and Fe-CeO2[J]. Energy,2021,216:119246. doi: 10.1016/j.energy.2020.119246
    [31] TIGHE C J, DENNIS J S, HAYHURST A N, TEIGG M. V. The reactions of NO with diesel soot, fullerene, carbon nanotubes and activated carbons doped with transition metals[J]. Proc Combust Inst,2009,32(2):1989−1996. doi: 10.1016/j.proci.2008.06.165
    [32] YAMASHITA H, YAMADA H, TOMITA A. Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen[J]. Appl Catal,1991,78(2):1−6. doi: 10.1016/0166-9834(91)80101-2
    [33] BAILÓN-GARCÍA E, ELMOUWAHIDI A, RIBEIRO F, HENRIQUES C, PEREZ-CADENAS A F, MARÍN F C, MALDONADO-HÓDAR H J. Reduction of NO with new vanadium-carbon xerogel composites. Effect of the oxidation state of vanadium species[J]. Carbon,2020,156:194−204. doi: 10.1016/j.carbon.2019.09.047
    [34] KIENER J, LIMOUSY L, JEGUIRIM M, LE MEINS J M, HAJJAR-GARREAU S, BIGOIN G, GHIMBEU C M. Activated carbon/transition metal (Ni, In, Cu) hexacyanoferrate nanocomposites for cesium adsorption[J]. Materials (Basel),2019,12(8):1253. doi: 10.3390/ma12081253
    [35] YAN Y L, XIAN C L. Direct catalytic reduction of NO by zero-valent Iron nanocrystalline cluster supported on biomass activated carbon[J]. CIESC J,2019,70(3):1111−1119.
    [36] LI X C, DONG Z, DOU J, YU J, TAHMASEBI A. Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment[J]. Fuel Process Technol,2016,148:91−98. doi: 10.1016/j.fuproc.2016.02.030
    [37] YANG N, YU J L, DOU J X, TAHMASEBI A, SONG H, MOGHTADERI B, LUCAS J, WALL T. The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning[J]. Fuel Process Technol,2016,152:102−107. doi: 10.1016/j.fuproc.2016.06.010
    [38] ILLÁN-GÓMEZ M J, RAYMUNDO-PIÑERO E, GARĆIA-GARĆIA A, LINARES-SOLANO A, SALINAS-MARTÍNEZ de LECEA C. Catalytic NOx reduction by carbon supporting metals[J]. Appl Catal B: Environ,1999,20:267−275. doi: 10.1016/S0926-3373(98)00119-2
    [39] CATALAO R A, MALDONADO-HÓDAR F J, FERNANDES A, HENRIQUES C, RIBEIRO M F. Reduction of NO with metal-doped carbon aerogels[J]. Appl Catal B: Environ,2009,88(1/2):135−141. doi: 10.1016/j.apcatb.2008.09.019
    [40] FENG B, LU G, WANG Y Q, GUO Y, GUO Y. Cocatalytic effect of potassium on NO reduction by activated carbon catalyzed by copper oxide[J]. Chin J Catal,2011,32(5):853−861.
    [41] VENEZUELA P, LAZZERI M, MAURI F. Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands[J]. Phys Rev,2011,84(3):1−25.
    [42] ZHANG G Q, ZHONG L, ZHENG H Y, FU T J, JU Y B, WANG Y C. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol[J]. Appl Catal B: Environ,2015,179:95−105. doi: 10.1016/j.apcatb.2015.05.001
    [43] TENG H, SUUBERG E M. Chemisorption of nitric oxide on char. 1. Reversible nitric oxide sorption[J]. J Chem Inform,1993,97(2):478−483.
    [44] TENG H, SUUBERG E M. Chemisorption of nitric oxide on char. 2. Irreversible carbon oxide formation[J]. Ind Eng Chem Res,1993,32(3):416−423. doi: 10.1021/ie00015a004
    [45] ULÁN-GÓMEZ M J, LINARES SOLANO A, RADOVIC A L R, SALINAS-MARTÍNEZ de LECEA C. No reduction by activated carbons. some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Coal Sci Technol,1995,24(1):1799−1802.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  92
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-11-22
  • 录用日期:  2021-11-24
  • 网络出版日期:  2021-12-15
  • 刊出日期:  2022-05-24

目录

    /

    返回文章
    返回