留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Unraveling the role of Ni13 catalyst supported on ZrO2 for CH4 dehydrogenation: The d-band electron reservoir

ZHI Cui-mei YANG Rui-hong ZHOU Chang-yu WANG Gui-ru DING Jia-ying YANG Wen

智翠梅, 杨瑞虹, 周昶宇, 王贵儒, 丁佳瑛, 杨雯. 载体ZrO2的d带电子对Ni13催化CH4脱氢过程的影响[J]. 燃料化学学报(中英文), 2022, 50(5): 601-610. doi: 10.1016/S1872-5813(21)60184-6
引用本文: 智翠梅, 杨瑞虹, 周昶宇, 王贵儒, 丁佳瑛, 杨雯. 载体ZrO2d带电子对Ni13催化CH4脱氢过程的影响[J]. 燃料化学学报(中英文), 2022, 50(5): 601-610. doi: 10.1016/S1872-5813(21)60184-6
ZHI Cui-mei, YANG Rui-hong, ZHOU Chang-yu, WANG Gui-ru, DING Jia-ying, YANG Wen. Unraveling the role of Ni13 catalyst supported on ZrO2 for CH4 dehydrogenation: The d-band electron reservoir[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 601-610. doi: 10.1016/S1872-5813(21)60184-6
Citation: ZHI Cui-mei, YANG Rui-hong, ZHOU Chang-yu, WANG Gui-ru, DING Jia-ying, YANG Wen. Unraveling the role of Ni13 catalyst supported on ZrO2 for CH4 dehydrogenation: The d-band electron reservoir[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 601-610. doi: 10.1016/S1872-5813(21)60184-6

载体ZrO2d带电子对Ni13催化CH4脱氢过程的影响

doi: 10.1016/S1872-5813(21)60184-6
详细信息
  • 中图分类号: TQ530

Unraveling the role of Ni13 catalyst supported on ZrO2 for CH4 dehydrogenation: The d-band electron reservoir

Funds: The project was supported by the National Natural Science Foundation of China (51871158), the Fundamental Research Program of Shanxi Province (201901D111273), the Innovation and Entrepreneurship Training Program for College Students of Shanxi Province (20210491), Scientific and technological innovation project of colleges and universities in Shanxi Province (2020L0353), the PhD Startup Fund of Taiyuan University of Science and Technology (20182003).
More Information
  • 摘要: C−H键活化是甲烷转化的关键,分散于ZrO2(111)表面的活性Ni13微粒能实现这一过程。密度泛函理论结果表明,相比Ni13催化过程,Ni13-ZrO2(111)更能活化CH4逐步脱氢并稳定其解离物种;且在载体ZrO2存在下,C−H键长增加,C−H断键活化能降低,放热量增多,达过渡态时,解离H与残留CHx间距减小,因此,负载催化剂Ni13-ZrO2(111)具有更好的催化性。究其原因,对于Ni−C−H,ZrO2丰富的d带电子使得Ni 3d电子密度增强,C 2p与Ni 3d轨道重叠增多,Ni−C键增强,C−H键减弱,基于此,CHx吸附增强,C−H键活性亦增强。因此,载体ZrO2d带为Ni13活化CH4促进C−H键解离提供着电子。
  • FIG. 1528.  FIG. 1528.

    FIG. 1528. 

    Figure  1  Top view correspond to Ni13 and Ni13-ZrO2(111) morphologies, respectively

    Figure  2  Most stable configurations of adsorbed species involved in CH4 dissociation on Ni13 and Ni13-ZrO2(111), respectivelyThe blue, gray, red, white and turquoise balls represent Ni, C, O, H and Zr atoms, respectively Bond length are in Å

    Figure  3  (a) Differential charge density, and (b) projected density of states (pDOS) for CH on Ni13 and Ni13-ZrO2(111)

    Figure  4  Structures of the ISs, TSs and FSs relevant to CH4 dissociation on (a) Ni13 and (b) Ni13-ZrO2(111) Bond lengths are in Å see Figure 2 for color coding

    Figure  5  Potential energy profile of C2 formations and C eliminations on (a) Ni13 and (b) Ni13-ZrO2(111) together with the corresponding structures

    Bond lengths are in Å see Figure 2 for color coding

    Figure  6  Partial density of states for CH3 adsorbed on Ni13 and Ni13-ZrO2(111) for the role of the support ZrO2: (a) broadening d-band, (b) stabilizing Ni−C bond and (c) activating C−H bond

    Table  1  Adsorption sites and adsorption energies (Eads) of the stable configurations for the adsorbed species involved in CH4 dissociation on Ni13 and Ni13-ZrO2(111), respectively

    SpeciesNi13Previous results
    Ni4[6], Ni(100)[7]
    Ni13-ZrO2(111)
    siteEads/eVEads/eVsiteEads/eV
    CH4 Ni-top 0.04 −0.41[6] Ni-top −0.02
    CH3 Ni-bridge −2.22 −2.37[6] Ni-bridge −2.46
    CH2 Ni-fold −4.36 −4.85[6], −3.76[7] Ni-fold −4.76
    CH Ni-fold −6.40 −6.71[6], −6.43[7] Ni-fold −7.00
    C Ni-fold −7.21 −8.94 [6], −7.27[7] Ni-fold −7.96
    H Ni-fold −2.78 −2.41[6], −2.36[7] Ni-fold −3.02
    DFT methods: Gaussian 09W code, GGA-PBE[6]; ADF-BAND code, GGA-RPBE[7]
    下载: 导出CSV

    Table  2  Activation energies the reaction energies the C−H bonds length of ISs and TSs (dC–H/Å) and H displacements (Å) involved in CH4 dissociation on Ni13 and Ni13-ZrO2(111)

    ReactionOur resultsPrevious results
    Ea/eVΔE/eVv/cm1dC–H ISs/ÅdC–H TSs/ÅH displacements/ÅEa/eVΔE/eV
    Ni13 Ni4[6] Ni(100)[7]
    CH4→CH3+H R1-1 0.61 −0.50 932 i 1.089 1.561 0.472 1.23[7]
    CH3→CH2+H R1-2 0.46 −0.15 416 i 1.107 2.337 1.230 0.84[6], 0.62[7] −1.41[6]
    CH2→CH+H R1-3 0.48 −0.22 625 i 1.107 1.795 0.688 0.33[6], 0.22[7] −4.40[6]
    CH→C+H R1-4 0.70 −0.07 747 i 1.107 1.479 0.372 1.37[6], 0.64[7] −5.96[6]
    C+C→C2 R1-5 3.80 0.62 524 i
    Ni13-ZrO2(111)
    CH4→CH3+H R2-1 0.14 −0.66 59 i 1.104 1.122 0.018
    CH3→CH2+H R2-2 0.35 −0.47 760 i 1.143 1.662 0.519
    CH2→CH+H R2-3 0.14 −0.53 488 i 1.189 1.782 0.593
    CH→C+H R2-4 0.40 −0.30 657 i 1.108 1.389 0.281
    C+C→C2 R2-5 1.90 1.87 170 i
    下载: 导出CSV
  • [1] STOLAROFF J K, BHATTACHARYYA S, SMITH C A, BOURCIER W L, CAMERON-SMITH P J, AINES R D. Review of methane mitigation technologies with application to rapid release of methane from the arctic[J]. Environ Sci Technol,2012,46(12):6455−6469. doi: 10.1021/es204686w
    [2] CABALLERO A, PÉREZ P J. Methane as raw material in synthetic chemistry: The final frontier[J]. Chem Soc Rev,2013,42(23):8809−8820. doi: 10.1039/c3cs60120j
    [3] GROOTEL P W V, SANTEN R A V, HENSEN E J M. Methane dissociation on high and low indices Rh surfaces[J]. J Phys Chem C,2011,115(26):13027−13034. doi: 10.1021/jp2033774
    [4] LI B, METIU H. Dissociation of methane on La2O3 surfaces doped with Cu, Mg, or Zn[J]. J Phys Chem C,2011,115(37):18239−18246. doi: 10.1021/jp2049603
    [5] ZHANG T Y, HOLIHARIMANANA D, YANG X F, GE Q F. DFT study of methane activation and coupling on the (0001) and (112̅0) surfaces of α-WC[J]. J Phys Chem C,2020,124(49):26722−26729. doi: 10.1021/acs.jpcc.0c06928
    [6] ROY G, CHATTOPADHYAY A P. Dissociation of methane on Ni4 cluster-A DFT study[J]. Comput Theor Chem,2017,1106:7−14. doi: 10.1016/j.comptc.2017.02.030
    [7] LI J D, CROISET E, RICARDEZ-SANDOVAL L. Methane dissociation on Ni(100), Ni(111), and Ni(553): A comparative density functional theory study[J]. J Mol Catal A-Chem,2012,365:103−114. doi: 10.1016/j.molcata.2012.08.016
    [8] LI J D, CROISET E, RICARDEZ-SANDOVAL L. Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study[J]. Appl Surf Sci,2014,311:435−442. doi: 10.1016/j.apsusc.2014.05.081
    [9] VASILIADES M A, DJINOVIĆ P, PINTAR A, KOVAČ J, EFSTATHIOU A M. The effect of CeO2-ZrO2 structural differences on the origin and reactivity of carbon formed during methane dry reforming over NiCo/CeO2-ZrO2 catalysts studied by transient techniques[J]. Catal Sci Technol,2017,7:5422−5434. doi: 10.1039/C7CY01009E
    [10] ZHANG S S, YING M, YU J, ZHAN W C, WANG L, GUO Y, GUO Y L. NixAl1O2-δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism[J]. Appl Catal B: Environ,2021,291:120074. doi: 10.1016/j.apcatb.2021.120074
    [11] ZHANG L, WANG X G, SHANG X F, TAN M W, DING W Z, LU X G. Carbon dioxide reforming of methane over mesoporous nickel aluminate/γ-alumina composites[J]. J Energy Chem,2017,26(1):93−100. doi: 10.1016/j.jechem.2016.08.001
    [12] WANG Y, YAO L, WANG Y N, WANG S H, ZHAO Q, MAO D H, HU C W. Low-temperature catalytic CO2 dry reforming of methane on Ni-Si/ZrO2 catalyst[J]. ACS Catal,2018,8(7):6495−6506. doi: 10.1021/acscatal.8b00584
    [13] HAN J W, PARK J S, CHOI M S, LEE H. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane[J]. Appl Catal B: Environ,2017,203:625−632. doi: 10.1016/j.apcatb.2016.10.069
    [14] BAUDOUIN D, RODEMERCK U, KRUMEICH F, MALLMANN A D, SZETO K C, MÉNARD H, VEYRE L, CANDY J P, WEBB P B, THIEULEUX C, COPÉRET C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles[J]. J Catal,2013,297:27−34. doi: 10.1016/j.jcat.2012.09.011
    [15] CUI Y H, XU H Y, GE Q J, WANG Y Z, HOU S F, LI W Z. Structure sensitive dissociation of CH4 on Ni/α-Al2O3: Ni nano-scale particles linearly compensate the Ea and ln A for the CH4 pulse kinetics[J]. J Mol Catal A-Chem,2006,249(1/2):53−59. doi: 10.1016/j.molcata.2006.01.009
    [16] YAN X L, HU T, LIU P, LI S, ZHAO B R, ZHANG Q, JIAO W Y, CHEN S, WANG P F, LU JJ, FAN L M, DENG X N, PAN Y X. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2[J]. Appl Catal B Environ,2019,246:221−231. doi: 10.1016/j.apcatb.2019.01.070
    [17] KAMBOLIS A, MATRALIS H, TROVARELLI A, PAPADOPOULOU C. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane[J]. Appl Catal A: Gen,2010,377(1/2):16−26. doi: 10.1016/j.apcata.2010.01.013
    [18] DJINOVIĆ P, ČRNIVEC I G O, ERJAVEC B, PINTAR A. Influence of active metal loading and oxygen mobility on coke-free dry reforming of Ni-Co bimetallic catalysts[J]. Appl Catal B: Environ,2012,125:259−270. doi: 10.1016/j.apcatb.2012.05.049
    [19] YAO L, SHI J, XU H L, SHEN W, HU C W. Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst[J]. Fuel Process Technol,2016,144:1−7. doi: 10.1016/j.fuproc.2015.12.009
    [20] ZHANG M, ZHANG J F, ZHOU Z L, CHEN S Y, ZHANG T, SONG F E, ZHANG Q D, TSUBAKI N, TAN Y S, HAN Y Z. Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst[J]. Appl Catal B: Environ,2020,264:118522. doi: 10.1016/j.apcatb.2019.118522
    [21] DĘBEK R, GALVEZ M E, LAUNAY F, MOTAK M, GRZYBEK T, COSTA P D. Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni-Mg-Al hydrotalcite-derived catalysts[J]. Int J Hydrogen Energy,2016,41(27):11616−11623. doi: 10.1016/j.ijhydene.2016.02.074
    [22] YAO L, WANG Y, SHI J, XU H L, SHEN W, HU C W. The influence of reduction temperature on the performance of ZrOx/Ni-MnOx/SiO2 catalyst for low-temperature CO2 reforming of methane[J]. Catal Today,2017,281(1):259−267.
    [23] ZHANG S H, MURATSUGU S, ISHIGURO N, TADA M. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane[J]. ACS Catal,2013,3(8):1855−1864. doi: 10.1021/cs400159w
    [24] LI K, PEI C L, LI X Y, CHEN S, ZHANG X H, LIU R, GONG J L. Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction[J]. Appl Catal B Environ,2020,264:118448. doi: 10.1016/j.apcatb.2019.118448
    [25] KE Q, KANG L M, CHEN X, WU Y. DFT study of CO2 catalytic conversion by H2 over Ni13 cluster[J]. J Chem Sci,2020,132(1):151. doi: 10.1007/s12039-020-01857-3
    [26] YILMAZER N D, FELLAH M F, ONAL I. A DFT study of ethylene hydrogenation reaction mechanisms on Ni13 nanocluster[J]. Top Catal,2013,56(9/10):789−793. doi: 10.1007/s11244-013-0043-0
    [27] RUSINA G G, BORISOVA S D, CHULKOV E V. Structure and atomic vibrations in bimetallic Ni13-nAln clusters[J]. JETP Lett,2015,101(7):474−480. doi: 10.1134/S0021364015070139
    [28] BANERJEE R, DATTA S, MOOKERJEE A. Structure, reactivity and electronic properties of Mn doped Ni13 clusters[J]. Phys B,2013,419(21):86−89.
    [29] CHEN S J, CHEN X, ZHANG H. Probing the activity of Ni13, Cu13 and Ni12Cu clusters towards the ammonia decomposition reaction by density functional theory[J]. J Mater Sci,2016,52(6):3162−3168.
    [30] YILMAZER N D, FELLAH M F, ONAL I. A density functional theory study of ethylene adsorption on Ni10(111), Ni13(100) and Ni10(110) surface cluster models and Ni13 nanocluster[J]. Appl Surf Sci,2010,256(16):5088−5093. doi: 10.1016/j.apsusc.2010.03.067
    [31] YAO Y H, GU X, JI M, GONG X G, WANG D S. Structures and magnetic moments of Nin (n=10~60) clusters[J]. Phys Lett A,2007,360(4/5):629−631. doi: 10.1016/j.physleta.2006.08.059
    [32] LIU B, LUSK M T, ELY J F. Influence of nickel catalyst geometry on the dissociation barriers of H2 and CH4: Ni13 versus Ni(111)[J]. J Phys Chem C,2009,113(31):13715−13722. doi: 10.1021/jp9003196
    [33] GRIGORYAN V G, SPRINGBORG M. A theoretical study of the structure of Ni clusters (NiN)[J]. Phys Chem Chem Phys,2001,3(23):5135−5139. doi: 10.1039/b105831m
    [34] MORTENSEN J J, HANSEN L B, JACOBSEN K W. Real-space grid implementation of the projector augmented wave method[J]. Phys Rev B,2005,71:035109. doi: 10.1103/PhysRevB.71.035109
    [35] REXER E F, JELLINEK J, KRISSINEL E B, PARK E K, RILEY S J. Theoretical and experimental studies of the structures of 12-, 13-, and 14-atom bimetallic nickel/aluminum clusters[J]. J Chem Phys,2002,117(1):82−94. doi: 10.1063/1.1481386
    [36] STEFANOVICH E V, SHLUGER A L, CATLOW C R A. Theoretical study of the stabilization of cubic-phase ZrO2 by impurities[J]. Phys Rev B,1994,49(17):11560−11571. doi: 10.1103/PhysRevB.49.11560
    [37] EREMEEV S V, NEMIROVICH-DANCHENKO L Y, KUL′KOVA S E. Effect of oxygen vacancies on adhesion at the Nb/Al2O3 and Ni/ZrO2 interfaces[J]. Phys Solid State,2008,50:543−552. doi: 10.1134/S1063783408030256
    [38] BELTRÁN J I, GALLEGO S, CERDÁJ, MOYA J S, MUÑOZ M C. Bond formation at the Ni/ZrO2 interface[J]. Phys Rev B,2003,68(7):075401. doi: 10.1103/PhysRevB.68.075401
    [39] ZHANG M, ZIJLSTRA B, FILOT IAW, LI F, WANG HO, LI J D, HENSEN EJM. A theoretical study of the reverse water-gas shift reaction on Ni(111) and Ni(311) surfaces[J]. Can J Chem Eng,2020,98(3):740−748. doi: 10.1002/cjce.23655
    [40] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations[J]. Phys Rev B,1976,13(12):5188−5192. doi: 10.1103/PhysRevB.13.5188
    [41] ZHI C M, YANG W. Improvement of Mo-doping on Sulfur-poisoning of Ni catalyst: Activity and selectivity to CO methanation[J]. Comput Theor Chem,2021,1197:113140. doi: 10.1016/j.comptc.2020.113140
    [42] KAPUR N, HYUN J, SHAN B, NICHOLAS J B, CHO K. Ab initio study of CO hydrogenation to oxygenates on reduced Rh terraces and stepped surfaces[J]. J Phys Chem C,2010,114(22):10171−10182. doi: 10.1021/jp911903u
    [43] AN W, CHEN X C, TURNER C H. First-principles study of methane dehydrogenation on a bimetallic Cu/Ni(111) surface[J]. J Chem Phys,2009,131(17):174702. doi: 10.1063/1.3254383
    [44] OU Z L, RAN J Y, NIU J T, ZHANG Z H, DENG T, HE Z Q, QIN C L. Effect of active site and charge transfer on methane dehydrogenation over different Co doped Ni surfaces by density functional theory[J]. Int J Hydrogen Energy,2020,45(56):31849−31862. doi: 10.1016/j.ijhydene.2020.08.187
    [45] PETERSSON G A, TENSFELDT T G, MONTGOMERY JR J A. Vinylidene and the hammond postulate[J]. J Am Chem Soc,1992,114:6133−6138. doi: 10.1021/ja00041a034
    [46] CHEN Z X, ALEKSANDROV H A, BASARAN D, RÖSCH N. Transformations of ethylene on the Pd(111) surface: A density functional study[J]. J Phys Chem C,2010,114(41):17683−17692. doi: 10.1021/jp104949w
    [47] ZHAO Z J, CHIU C C, GONG J L. Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts[J]. Chem Sci,2015,6(8):4403−4425. doi: 10.1039/C5SC01227A
    [48] KHETTAL H, HAROUN M F, BOUKELKOUL M. Theoretical study of CH4 adsorption and dissociation on W-Cu(100) surface[J]. Comput Theor Chem,2020,1186:112890. doi: 10.1016/j.comptc.2020.112890
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  177
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2021-12-03
  • 录用日期:  2021-12-03
  • 网络出版日期:  2021-12-13
  • 刊出日期:  2022-05-24

目录

    /

    返回文章
    返回