留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤焦颗粒催化气化过程中分形特性的原位研究

陈倩 韦兵 陈俊潜 江航 叶奕强 王兴军 郭庆华 于广锁 王辅臣

陈倩, 韦兵, 陈俊潜, 江航, 叶奕强, 王兴军, 郭庆华, 于广锁, 王辅臣. 煤焦颗粒催化气化过程中分形特性的原位研究[J]. 燃料化学学报(中英文), 2022, 50(5): 523-529. doi: 10.1016/S1872-5813(21)60185-8
引用本文: 陈倩, 韦兵, 陈俊潜, 江航, 叶奕强, 王兴军, 郭庆华, 于广锁, 王辅臣. 煤焦颗粒催化气化过程中分形特性的原位研究[J]. 燃料化学学报(中英文), 2022, 50(5): 523-529. doi: 10.1016/S1872-5813(21)60185-8
CHEN Qian, WEI Bing, CHEN Jun-qian, JIANG Hang, YE Yi-qiang, WANG Xing-jun, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. In-situ study of fractal properties of coal char particles during catalytic gasification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 523-529. doi: 10.1016/S1872-5813(21)60185-8
Citation: CHEN Qian, WEI Bing, CHEN Jun-qian, JIANG Hang, YE Yi-qiang, WANG Xing-jun, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. In-situ study of fractal properties of coal char particles during catalytic gasification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(5): 523-529. doi: 10.1016/S1872-5813(21)60185-8

煤焦颗粒催化气化过程中分形特性的原位研究

doi: 10.1016/S1872-5813(21)60185-8
基金项目: 国家自然科学基金(U21A20319)资助
详细信息
    通讯作者:

    Tel: 021-64250734, E-mail: wxj@ecust.edu.cn

  • 中图分类号: TQ54

In-situ study of fractal properties of coal char particles during catalytic gasification

Funds: The project was supported by National Natural Science Foundation of China (U21A20319).
  • 摘要: 通过高温热台原位研究气化阶段钾基催化剂对神府煤焦的催化气化作用。考察了气化温度(800−900 ℃)和催化剂负载量(4.4%、10%(质量分数))对煤焦反应性能的影响。通过热台显微镜对煤焦颗粒催化气化过程进行可视化研究并引入分形理论对煤焦颗粒表面结构进行分析,揭示分形维数所表征的气化反应性。实验结果表明,煤焦颗粒的分形维数与之碳转化率呈正相关性,即催化剂负载量一定,改变气化温度,分形维数愈大,煤焦颗粒的碳转化率越大;气化温度一定,改变催化剂负载量,分形维数愈大,煤焦颗粒的碳转化率越大;煤焦颗粒的初始气化反应速率与分形维数关系与碳转化率一致;煤焦颗粒的分形维数与煤焦球度、角度间相关性较大,存在指数关系;即分形维数随煤焦颗粒角度的增加而增大;煤焦颗粒分形维数指标可用于煤焦催化气化过程的研究。
  • FIG. 1521.  FIG. 1521.

    FIG. 1521.  FIG. 1521.

    图  1  气化温度对气化反应性能的影响

    Figure  1  Effect of gasification temperature on gasification reactivity

    图  2  催化剂负载量对气化反应性能的影响

    Figure  2  Effect of catalyst loading on gasification reactivity

    图  3  气化温度对煤焦催化气化的影响

    Figure  3  Effect of gasification temperature on the catalytic gasification of coal char

    图  4  4.4%催化剂负载量与不同气化温度的lgP-lgA关系

    Figure  4  Curves of lgP-lgA at different gasification temperatures (catalyst loading = 4.4%)

    图  5  分形维数与碳转化率、初始气化反应速率的关系

    Figure  5  Relationship between fractal dimension and carbon conversion or initial gasification reaction rate

    图  6  分形维数和球度、角度之间的关系

    Figure  6  Relationship between fractal dimension and sphericity or angle

    表  1  样品的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of tested samples

    Proximate analysis w/%Ultimate analysis wd/%
    MadAdVdFCdCHNO*S
    1.096.6033.1760.2374.134.890.9612.510.94
    *: by difference; ad: air dried basis; d: dry basis
    下载: 导出CSV

    表  2  气化温度和催化剂负载量对分形维数的影响

    Table  2  Effects of gasification temperature and catalyst loading on fractal dimension

    Gasification temperature/℃Catalyst loading
    0.04.4%10.0%
    8000.8030.993
    8500.8520.8761.107
    9000.9040.9471.329
    下载: 导出CSV
  • [1] LEE R P, SEIDL L G, HUANG Q L, MEYER B. An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities[J]. J Fuel Chem Technol,2021,49(8):1057−1076. doi: 10.1016/S1872-5813(21)60093-2
    [2] SHARMA A, TAKANOHASHI T, SAITO I. Effect of catalyst addition on gasification reactivity of hyper coal and coal with steam at 775–700°C[J]. Fuel, 2008, 87(12): 2686–2690.
    [3] YEBOAH Y D, XU Y, SHETH A,GODAVARTY A, AGRAWAL P K. Catalytic gasification of coal using eutectic salts: Identification of eutectics[J]. Carbon,2003,41(2):203−214. doi: 10.1016/S0008-6223(02)00310-X
    [4] BAI Y H, LV P, LI F, SONG X D, SU W G, YU G S. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam[J]. Energy Convers Manage,2019,184(4):172−179.
    [5] WANG Y N, NIU P J, ZHAO H B. Chemical looping gasification of coal using calcium ferrites as oxygen carrier[J]. Fuel Process Technol,2019,192:75−86. doi: 10.1016/j.fuproc.2019.04.009
    [6] KOPYSCINSKI J, LAM J, MIMS C A, HILL J M. K2CO3 catalyzed steam gasification of ash-free coal. Studying the effect of temperature on carbon conversion and gas production rate using a drop-down reactor[J]. Fuel,2014,128(15):210−219.
    [7] 卫俊涛, 丁路, 周志杰, 于广锁. 负载碳酸钾煤焦-CO2催化气化反应特性的原位研究[J]. 燃料化学学报,2015,43(11):1311−1319. doi: 10.3969/j.issn.0253-2409.2015.11.005

    WEI Jun-tao, DING Lu, ZHOU Zhi-jie, YU Guang-suo. In-situ analysis of catalytic gasification reaction characteristics of coal char-CO2 with K2CO3 additive[J]. J Fuel Chem Technol,2015,43(11):1311−1319. doi: 10.3969/j.issn.0253-2409.2015.11.005
    [8] DING L, ZHOU Z J, HUO W, WANG Y F, YU G S. In situ heating stage analysis of fusion and catalytic effects of a Na2CO3 additive on coal char particle gasification[J]. Ind Eng Chem Res,2015,53(49):19159−19167.
    [9] 梅艳钢, 王志青, 张郃, 张胜健, 房倚天. 碱金属迁移对煤焦气化反应性的原位探究[J]. 燃料化学学报,2021,49(6):735−741.

    MEI Yan-gang, WANG Zhi-qing, ZHANG He, ZHANG Sheng-jian, FANG Yi-tian. In situ investigation of alkali metal migration on the reactivity of coal coke gasification[J]. J Fuel Chem Technol,2021,49(6):735−741.
    [10] MANDELBROT B B. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars[J]. J Fluid Mech,2006,72(3):401−416.
    [11] MANDELBROT B B. Fractal analysis and synthesis of fracture surface roughness and related forms of complexity and disorder[J]. Int J Fract,2006,138(1/4):13−17. doi: 10.1007/s10704-006-0037-z
    [12] JIANG Q, LOGAN B E. Fractal dimensions of aggregates determined from steady-state size distributions[J]. Environ Sci Technol,1991,25(12):2031−2038. doi: 10.1021/es00024a007
    [13] 王兴军, 苏宇峰, 易敏, 刘海峰, 龚欣, 于广锁, 王辅臣. 气流床煤气化水系统中絮凝物的絮凝及分形特性[J]. 煤炭学报,2016,41(5):1266−1272.

    WANG Xing-jun, SU Yu-feng, YI Min, LIU Hai-feng, GONG Yan, WANG Fu-chen. Flocculation process and fractal character of floc in water systems of entrained bed coal gasification[J]. J Coal Sci Eng,2016,41(5):1266−1272.
    [14] LI Z, NI G H, SUN L L, SUN Q, LI S, DONG K, XIE J N, WANG G. Effect of ionic liquid treatment on pore structure and fractal characteristics of low rank coal[J]. Fuel,2020,262:116513. doi: 10.1016/j.fuel.2019.116513
    [15] 周静, 周志杰, 龚欣, 于遵宏. 煤焦二氧化碳气化动力学研究 (Ⅰ)等温热重法[J]. 煤炭转化,2002,25(4):66−69. doi: 10.3969/j.issn.1004-4248.2002.04.016

    ZHOU Jing, ZHOU Zhi-jie, GONG Xin, YU Zun-hong. Study of char- CO2 gasification (I) by isothermal thermogravimetry[J]. Coal Convers,2002,25(4):66−69. doi: 10.3969/j.issn.1004-4248.2002.04.016
    [16] 周静, 龚欣, 于遵宏. 煤焦二氧化碳气化动力学研究 (Ⅱ)非等温热重法[J]. 煤炭转化,2003,26(1):78−81. doi: 10.3969/j.issn.1004-4248.2003.01.018

    ZHOU Jing, GONG Xing, YU Zun-hong. A study of char-CO2 gasification part (II) by temperature-programmed thermogravimetry[J]. Coal Convers,2003,26(1):78−81. doi: 10.3969/j.issn.1004-4248.2003.01.018
    [17] FAN C, JIN H, SHANG F, FENG H F, SUN J L. Study on the surface structure development of porous char particles in catalytic supercritical water gasification process[J]. Fuel Process Technol,2019,193:73−81. doi: 10.1016/j.fuproc.2019.04.029
    [18] 姜贤刚, 刘洁, 冯莉, 唐杰武. 热解温度和脱灰处理对褐煤半焦孔结构的影响及分形分析[J]. 煤炭转化,2018,41(3):19−26. doi: 10.3969/j.issn.1004-4248.2018.03.003

    JIANG Xian-gang, LIU Jie, FENG Li, TANG Jie-wu. Effects of pyrolysis temperature and de-ashing treatment on pore structure of lignite semi-coke and its fractal analysis[J]. Coal Convers,2018,41(3):19−26. doi: 10.3969/j.issn.1004-4248.2018.03.003
    [19] SHEN Z J, LIANG Q F, XU J L, ZHANG B B, LIU H F. In-situ experimental study of CO2 gasification of char particles on molten slag surface[J]. Fuel,2015,160:560−567. doi: 10.1016/j.fuel.2015.08.010
    [20] 柳明, 沈中杰, 韩冬, 梁钦锋, 许建良, 刘海峰. 一种石油焦与CO2高温气化原位反应特性[J]. 化工学报,2017,68(4):1622−1628.

    LIU Ming, SHEN Zhong-jie, HAN Dong, LIANG Qin-feng, XU Jian-liang, LIU Hai-feng. In-situ gasification characteristics of a petroleum coke with CO2 at high temperature[J]. J Chem Eng,2017,68(4):1622−1628.
    [21] 霍威. 煤等含碳物质热解特性及气化反应特性模型化研究[D]. 上海: 华东理工大学, 2015.

    HUO Wei. Research on pyrolysis characteristics and gasification kinetics modeling of coal and other carbonaceous materials[D]. Shanghai: East China University of Science and Technology, 2015.
    [22] ARASAN S, AKBULUT S, HASILOGLU A S. The relationship between the fractal dimension and shape properties of particles[J]. KSCE J Civ Eng,2011,15(7):1219−1225. doi: 10.1007/s12205-011-1310-x
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  845
  • HTML全文浏览量:  147
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2021-12-06
  • 录用日期:  2021-12-06
  • 网络出版日期:  2021-12-20
  • 刊出日期:  2022-05-24

目录

    /

    返回文章
    返回