留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MFBRA和XPS的山西高硫无烟煤热解脱硫动态释放和相互转化规律的实验研究

鲁鹏 付亮亮 徐铮 白浩隆 李亚芾 白丁荣 许光文

鲁鹏, 付亮亮, 徐铮, 白浩隆, 李亚芾, 白丁荣, 许光文. 基于MFBRA和XPS的山西高硫无烟煤热解脱硫动态释放和相互转化规律的实验研究[J]. 燃料化学学报(中英文), 2022, 50(6): 693-702. doi: 10.1016/S1872-5813(21)60188-3
引用本文: 鲁鹏, 付亮亮, 徐铮, 白浩隆, 李亚芾, 白丁荣, 许光文. 基于MFBRA和XPS的山西高硫无烟煤热解脱硫动态释放和相互转化规律的实验研究[J]. 燃料化学学报(中英文), 2022, 50(6): 693-702. doi: 10.1016/S1872-5813(21)60188-3
LU Peng, FU Liang-liang, XU Zheng, BAI Hao-long, LI Ya-fu, BAI Ding-rong, XU Guang-wen. Experimental study on dynamic release and transformation of sulfur during pyrolysis of Shanxi high-sulfur anthracites based on MFBRA and XPS[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 693-702. doi: 10.1016/S1872-5813(21)60188-3
Citation: LU Peng, FU Liang-liang, XU Zheng, BAI Hao-long, LI Ya-fu, BAI Ding-rong, XU Guang-wen. Experimental study on dynamic release and transformation of sulfur during pyrolysis of Shanxi high-sulfur anthracites based on MFBRA and XPS[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 693-702. doi: 10.1016/S1872-5813(21)60188-3

基于MFBRA和XPS的山西高硫无烟煤热解脱硫动态释放和相互转化规律的实验研究

doi: 10.1016/S1872-5813(21)60188-3
基金项目: 辽宁省“兴辽英才计划”项目(XLYC1902021)和国家自然科学基金委辽宁联合基金重点项目(U190820065)的资助
详细信息
    通讯作者:

    E-mail: full_1985@syuct.edu.cn

    gwxu@syuct.edu.cn

  • 中图分类号: TQ523

Experimental study on dynamic release and transformation of sulfur during pyrolysis of Shanxi high-sulfur anthracites based on MFBRA and XPS

Funds: The project was supported by Liaoning Province "Xing Liao Talents Plan" project (XLYC1902021) and Key project of the Liaoning Joint Fund of the National Natural Science Foundation of China (U190820065).
  • 摘要: 利用微型流化床反应分析仪(MFBRA),开展了两种山西高硫无烟煤的热解脱硫实验。通过对含硫气体动态释放的在线快速检测、结合原料煤和热解半焦的形态硫以及含硫组分的X射线光电子能谱(XPS)分析,研究了含硫气体释放特征及相应半焦含硫组分在热解过程中的变化,重点探讨了高硫无烟煤在氢气气氛下各含硫组分的动态释放和相互转化过程及规律。研究结果表明,高硫无烟煤有机硫含量越高,在氢气气氛下的脱硫效率越高;两种高硫无烟煤在氢气气氛下热解硫释放均呈现两个阶段,对应热解脱硫峰值温度分别为530−560 ℃和812−830 ℃。第一阶段由黄铁矿的还原反应引起,第二阶段以有机硫裂解为主;在低温热解条件下高硫无烟煤中无机硫会向有机硫转变,而在较高温度下发生不同形态有机硫之间的迁移。本研究结果将为高硫无烟煤制备低硫煤的技术开发提供方法指导和基础数据。
  • FIG. 1590.  FIG. 1590.

    FIG. 1590.  FIG. 1590.

    图  1  实验煤样的粒度分布

    Figure  1  Particle size distributions of raw coal samples

    图  2  微型流化床反应分析仪流程

    Figure  2  Schematic diagram of the MFBRA used in experiments

    图  3  气氛对ST煤样在不同热解温度下的半焦收率和脱硫率的影响

    Figure  3  Effect of atmosphere on char yield and desulfurization rate of ST coal sample at different pyrolysis temperatures

    图  4  煤热解过程中H2S 的逸出曲线

    Figure  4  Evolution of H2S during pyrolysis of coal samples

    图  5  黄铁矿热解过程中H2S的逸出曲线

    Figure  5  Evolution of H2S during pyrolysis of a pyrite sample

    图  6  LDS酸洗脱灰煤热解过程中H2S的逸出曲线

    Figure  6  Evolution of H2S during pyrolysis of an acid eluted ash LDS coal sample

    图  7  ST煤不同热解温度下硫含量的变化

    Figure  7  Changes of sulfur content in ST coal at different pyrolysis temperatures

    图  8  ST无烟煤及各温度下半焦的S 2p谱图

    Figure  8  S 2p spectra of ST coal and char at different temperatures

    (a): ST raw coal; (b): ST-650 ℃-H2; (c): ST-750 ℃-H2; (d): ST-850 ℃-H2

    图  9  LDS无烟煤及各温度下半焦的S 2p谱图

    Figure  9  S 2p spectra of LDS coal and charcoal at different temperatures

    (a): LDS raw coal; (b): LDS-800 ℃-H2; (c): LDS-900 ℃-H2

    图  10  XPS分析LDS煤及其半焦表面的硫形态

    Figure  10  Sulfur forms of LDS coal and char determined by XPS

    图  11  热解温度对氢气气氛中ST和LDS煤脱硫率及半焦含硫量的影响

    Figure  11  Effect of pyrolysis temperatures on desulfurization rate of ST and LDS coal in the hydrogen atmosphere and total sulfur of char

    图  12  黄铁矿和有机硫脱硫率及其对全硫脱除贡献率随温度的变化

    Figure  12  Variation of desulfurization rate of pyrite and organic sulfur and its contribution to the total sulfur removal at different temperatures

    (a): pyritic sulfur; (b): organic sulfur

    表  1  煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of raw coal samples

    SampleProximate analysis w/%Ultimate analysis w/%
    AdVdafFCdafCdafHdafNdafSt,d
    ST17.539.6772.8079.803.600.924.19
    LDS21.798.9269.2985.613.811.016.30
    A:ash;V:volatile;FC:fixed carbon;C:carbon;H:hydrogen;O:oxygen;N:nitrogen; S:sulfur; d: dry basis ;
    daf: dry-ash-free;t:total sulfur
    下载: 导出CSV

    表  2  煤中形态硫分析

    Table  2  Analyzed sulfur forms of raw coal samples

    SampleContent w/%
    St,dSp,dSs,dSo,d
    ST 4.19 1.96 0.13 2.10
    LDS 6.30 1.67 0.06 4.57
    t:total sulfur;p:pyrite sulfur;s: sulfate sulfur;o: organic sulfur; d:dry basis
    下载: 导出CSV

    表  3  XPS分析所得ST煤及其半焦表面的硫形态和总硫

    Table  3  Sulfur forms and total sulfur of ST coal and char determined by XPS

    Pyrolysis condition w/%
    sulfidicthiophenicsulfoxidesulfonessulfatetotal sulfur
    ST raw coal 0.16 0.8 0.42 0.47 1.85
    ST-450 ℃-H2 0.29 0.85 0.43 0.28 1.85
    ST-550 ℃-H2 0.23 1.39 0.45 0.1 0.21 2.38
    ST-650 ℃-H2 0.16 0.76 0.26 0.26 1.44
    ST-750 ℃-H2 0.74 0.14 0.28 0.04 1.2
    ST-850 ℃-H2 0.15 0.21 0.02 0.15 0.18 0.71
    下载: 导出CSV
  • [1] ZHAO H B, JIN L J, WANG M Y, WEI B Y, HU H Q. Integrated process of coal pyrolysis with catalytic reforming of simulated coal gas for improving tar yield[J]. Fuel,2019,255(1):115797.1−115797.10.
    [2] 刘汉斌, 马志斌, 郭彦霞, 程芳琴. 山西高硫高灰煤分布赋存特征及开发利用建议[J]. 中国矿业,2020,29(11):206−211.

    LIU Han-bin, MA Zhi-bin, GUO Yan-xia, CHENG Fang-qin. Occurrence characteristics and utilization suggestions of high sulfur and high ash coal in Shanxi province[J]. China Min Mag,2020,29(11):206−211.
    [3] 王之正, 王利斌, 裴贤丰, 王岩, 白效言. 高硫煤热解脱硫技术研究现状[J]. 洁净煤技术,2014,20(2):76−79.

    WANG Zhi-zheng, WANG Li-bin, PEI Xian-feng, WANG Yan, BAI Xiao-yan. Desulfurization of high sulfur coal through pyrolysis[J]. Clean Coal Technol,2014,20(2):76−79.
    [4] YAN R, ZHU H J, ZHENG C G, XU M H. Emissions of organic hazardous air pollutants during Chinese coal combustion[J]. Energy,2002,27(5):485−503. doi: 10.1016/S0360-5442(02)00003-8
    [5] Chalcogens. New chalcogens study findings have been reported from Zhejiang University (Sulfur Transformation during Hydrothermal Dewatering of Low Rank Coal)[J]. Energy Weekly News, 2015.
    [6] LIU Q R, XIA H, HUANG G X, ZHANG C X, MA M J, WAN C. Desulphurization of high sulfur coal by mild pyrolysis combination with magnetic separation[J]. Adv Mater Res,2012,1528(455/456):998−1001.
    [7] 王娜, 李文, 李保庆. 煤多段加氢热解过程的脱硫脱氮效应研究[J]. 燃料化学学报,2001,29(1):29−32. doi: 10.3969/j.issn.0253-2409.2001.01.006

    WANG Na, LI Wen, LI Bao-qin. Study on desulfurization and denitrification effect in multi-stage hydropyrolysis of coal[J]. J Fuel Chem Technol,2001,29(1):29−32. doi: 10.3969/j.issn.0253-2409.2001.01.006
    [8] 高洪亮, 范晓伟, 王方, 于海龙, 杨晓明, 李冀静. 惰性气氛下煤热解脱硫的试验研究[J]. 热力发电,2008,37(10):28−30+48. doi: 10.3969/j.issn.1002-3364.2008.10.008

    GAO Hong-liang, FAN Xiao-wei, WANG Fang, YU Hai-long, YANG Xiao-ming, LI Ji-jing. Experimental study on coal pyrolysis desulfurization in inert atmosphere[J]. Thermal Power Gener,2008,37(10):28−30+48. doi: 10.3969/j.issn.1002-3364.2008.10.008
    [9] 刘志红, 涂威, 韩正伟. 煤中硫在氩气气氛下迁移规律试验研究[J]. 煤炭技术,2018,37(2):310−312.

    LIU Zhi-hong, TU Wei, HAN Zheng-wei. Experimental study on migration patterns of sulfur in coal under argon atmosphere[J]. Coal Technol,2018,37(2):310−312.
    [10] 高梅杉, 张建民, 罗鸣. 煤在还原性气氛下热解硫的析出机理研究进展[J]. 洁净煤技术,2005,11(1):34−38. doi: 10.3969/j.issn.1006-6772.2005.01.009

    GAO Hai-shan, ZHANG Jian-min, LUO Ming. Research progress on sulfur release mechanism of coal pyrolysis in reducing atmosphere[J]. Clean Coal Technol,2005,11(1):34−38. doi: 10.3969/j.issn.1006-6772.2005.01.009
    [11] 吴晓丹, 胡浩权. 煤在不同气氛下热解脱硫研究进展[J]. 煤炭转化,2002,25(4):6−12. doi: 10.3969/j.issn.1004-4248.2002.04.003

    WU Xiao-dan, HU Hao-quan. Research progress of coal pyrolysis desulfurization in different atmospheres[J]. Coal Convers,2002,25(4):6−12. doi: 10.3969/j.issn.1004-4248.2002.04.003
    [12] 刘少林, 孔娇, 申岩峰, 李挺, 杨暖暖, 王美君, 常丽萍. 高有机硫炼焦煤分选组分中硫的赋存形态及其热变迁行为研究[J]. 燃料化学学报,2019,47(8):915−924. doi: 10.3969/j.issn.0253-2409.2019.08.003

    LIU Shao-lin, KONG Jiao, SHEN Yan-feng, LI Ting, YANG Nuan-nuan, WANG Mei-jun, CHANG Li-ping. Sulfur occurrence and transformation during pyrolysis of the flotation fraction from coking coals with high organic sulfur[J]. J Fuel Chem Technol,2019,47(8):915−924. doi: 10.3969/j.issn.0253-2409.2019.08.003
    [13] ARIUNAA A, LI B Q, LI W, PUREVSUREN B, MUNKHJARGAL S, LIU F R, BAI Z Q, WANG G. Coal pyrolysis under synthesis gas, hydrogen and nitrogen[J]. J Fuel Chem Technol,2007,35(1):1−4. doi: 10.1016/S1872-5813(07)60007-3
    [14] HOU J L, MA Y, LI S Y, SHI J, HE L, LI J. Transformation of sulfur and nitrogen during Shenmu coal pyrolysis[J]. Fuel,2018,231(1):134−144.
    [15] YU J, YUE J R, LIU Z E, DONG L, XU G W, ZHU J H, DUAN Z K, SUN L X. Kinetics and mechanism of solid reactions in a micro fluidized bed reactor[J]. AIChE J,2010,56(11):2905−2912. doi: 10.1002/aic.12205
    [16] HAN Z N, YUE J R, GENG S L, HU D D, LIU X J, BELLO S S, CUI Y B, BAI D R, XU G W. State-of-the-art hydrodynamics of gas-solid micro fluidized beds[J]. Chem Eng Sci,2021,232.
    [17] 刘粉荣, 李文, 李保庆, 陈皓侃. 氧化性气氛下流化床中煤的热解脱硫及硫的分布[J]. 燃料化学学报,2006,34(4):404−407. doi: 10.3969/j.issn.0253-2409.2006.04.005

    LIU Fen-rong, LI Wen, LI Bao-qin, CHEN Hao-kan. Sulfur removal and its distribution during coal pyrolysis in fluidized bed reactor under oxidative atmospheres[J]. J Fuel Chem Technol,2006,34(4):404−407. doi: 10.3969/j.issn.0253-2409.2006.04.005
    [18] QI Y Q, LI W, CHEN H K, LI B Q. Desulfurization of coal through pyrolysis in a fluidized-bed reactor under nitrogen and 0.6% O2-N2 atmosphere[J]. Fuel,2004,83(6):705−712. doi: 10.1016/j.fuel.2003.09.021
    [19] LIU X H, XU G W, GAO S Q. Micro fluidized beds: Wall effect and operability[J]. Chem Eng J,2008,137(2):302−307. doi: 10.1016/j.cej.2007.04.035
    [20] HAN Z N, YUE J R, ZENG X, YU J, WANG F, SUN S Z, YAO H, LUO G Q, LIU X J, SUN Y N, DING F, LFU L L, SHI L, WANG K J, YANG J B, WANG S N, CHEN X Q, BAI D R, XU G W. Characteristics of gas-solid micro fluidized beds for thermochemical reaction analysis[J]. Carbon Resour Convers,2020,3:203−218. doi: 10.1016/j.crcon.2020.12.005
    [21] HAN Z N, YUE J R, GENG S L, HU D D, L X J, SULEIMAN S B, CUI Y B, BAI D R, XU G W. Conditioning micro fluidized bed for maximal approach of gas plug flow[J]. Chem Eng J,2018,351:110−118. doi: 10.1016/j.cej.2018.06.076
    [22] 余剑, 朱剑虹, 岳君容, 孙立鑫, 刘新华, 许光文. 微型流化床反应动力学分析仪的研制与应用[J]. 化工学报,2009,60(10):2669−2674.

    YU Jian, ZHU Jian-hong, YUE Jun-rong, SUN Li-xing, LIU Xin-hua, XU Guang-wen. Development and application of micro kinetic analyzer for fluidized bed gas-solid reactions[J]. J Chem Ind Eng,2009,60(10):2669−2674.
    [23] 王芳, 曾玺, 王永刚, 余剑, 岳君容, 张建岭, 许光文. 微型流化床与热重测定煤焦非等温气化反应动力学对比[J]. 化工学报,2015,66(5):1716−1722.

    WANG Fang, ZENG Xi, WANG Yong-gang, YU Jian, YUE Jun-rong, ZHANG Jian-ling, XU Guang-wen. Comparation of non-isothermal coal char gasification in micro fluidized bed and thermogravimetric analyzer[J]. J Chem Ind Eng,2015,66(5):1716−1722.
    [24] 王芳, 曾玺, 韩江则, 张聚伟, 刘云义, 汪印, 李奡明, 余剑, 许光文. 微型流化床与热重测定煤焦-CO2气化反应动力学的对比研究[J]. 燃料化学学报,2013,41(4):407−413. doi: 10.3969/j.issn.0253-2409.2013.04.004

    WANG Fang, ZENG Xi, HAN Jiang-ze, ZHANG Ju-wei, LIU Yun-yi, WANG Yin, LI Ao-ming, YU Jian, XU Guang-wen. Comparation of char gasification kinetics studied by micro fluidized bed and by thermogravimetric analyzer[J]. J Fuel Chem Technol,2013,41(4):407−413. doi: 10.3969/j.issn.0253-2409.2013.04.004
    [25] YU J, ZENG X, ZHANG G Y, ZHANG J W, WANG Y, XU G W. Kinetics and mechanism of direct reaction between CO2 and Ca(OH)2 in micro fluidized bed[J]. EST,2013,47(13):7514−7520. doi: 10.1021/es4001196
    [26] IANG W W, HAO W Q, LIU X J, HAN Z N, YUE J R, XU G W. Characteristic and kinetics of light calcination of magnesite in micro fluidized bed reaction analyzer[J]. J Chem Ind Eng,2019,70(8):2928−2937.
    [27] YAN J N, XU L, YANG J L. A study on the thermal decomposition of coal-derived pyrite[J]. J Anal Appl Pyrolysis,2008,82(2):229−234. doi: 10.1016/j.jaap.2008.03.013
    [28] YANI S, ZHANG D. An experimental study into pyrite transformation during pyrolysis of Australian lignite samples[J]. Fuel,2009,89(7):1700−1708.
    [29] 易平贵, 俞庆森, 宗汉兴. 黄铁矿化学脱硫的热力学分析[J]. 煤炭转化,1999,29(1):3−5.

    YI Ping-gui, YU Qin-seng, ZONG Han-xing. Thermodynamic analysis of chemical desulfurization of pyrite[J]. Coal Convers,1999,29(1):3−5.
    [30] LIU F R, LI W, CHEN H K, LI B Q. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel,2006,86(3):360−366.
    [31] GRZYBEK T, PIETRZAK R, WACHOWSKA H. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content[J]. Fuel Process. Technol,2002,77:1−7.
    [32] 陈鹏. 应用XPS研究煤中有机硫在脱硫时的存在形态[J]. 洁净煤技术,1997,3(2):17−20.

    CHEN Peng. Study on the existing forms of organic sulfur in coal during desulfurization by XPS[J]. Clean Coal Technol,1997,3(2):17−20.
    [33] ZHANG L J, LI Z H, YANG Y L, ZHOU Y B, LI J H, SI L L, KONG B. Research on the composition and distribution of organic sulfur in coal[J]. Molecules,2016,21(5):630. doi: 10.3390/molecules21050630
    [34] 王之正, 王利斌, 裴贤丰, 赵奇, 白效言, 王岩. 沁能焦煤中各形态硫热解迁移规律研究[J]. 煤炭科学技术,2014,42(4):116−120.

    WANG Zhi-zheng, WANG Li-bin, PEI Xian-feng, ZHAO Qi, BAI Xiao-yan, WANG Yan. Transfer laws of various sulfur speciation during pyrolysis of Qinneng coking coal[J]. Coal Sci Technol,2014,42(4):116−120.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  187
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 修回日期:  2021-12-09
  • 录用日期:  2021-12-27
  • 网络出版日期:  2022-01-06
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回