留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性活性焦负载Ni-Ce双功能催化剂富氧一体化脱除NO和CO

王淑瑶 程昊 吉茂 张学彬 王树东 李超 王明登 孙刚森

王淑瑶, 程昊, 吉茂, 张学彬, 王树东, 李超, 王明登, 孙刚森. 改性活性焦负载Ni-Ce双功能催化剂富氧一体化脱除NO和CO[J]. 燃料化学学报(中英文), 2022, 50(7): 877-883. doi: 10.1016/S1872-5813(21)60192-5
引用本文: 王淑瑶, 程昊, 吉茂, 张学彬, 王树东, 李超, 王明登, 孙刚森. 改性活性焦负载Ni-Ce双功能催化剂富氧一体化脱除NO和CO[J]. 燃料化学学报(中英文), 2022, 50(7): 877-883. doi: 10.1016/S1872-5813(21)60192-5
WANG Shu-yao, CHENG Hao, JI Mao, ZHANG Xue-bin, WANG Shu-dong, LI Chao, WANG Ming-deng, SUN Gang-sen. Simultaneous removal of NO and CO over Ni-Ce bifunctional catalyst supported by modified activated coke at oxygen-rich condition[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 877-883. doi: 10.1016/S1872-5813(21)60192-5
Citation: WANG Shu-yao, CHENG Hao, JI Mao, ZHANG Xue-bin, WANG Shu-dong, LI Chao, WANG Ming-deng, SUN Gang-sen. Simultaneous removal of NO and CO over Ni-Ce bifunctional catalyst supported by modified activated coke at oxygen-rich condition[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 877-883. doi: 10.1016/S1872-5813(21)60192-5

改性活性焦负载Ni-Ce双功能催化剂富氧一体化脱除NO和CO

doi: 10.1016/S1872-5813(21)60192-5
基金项目: 大连市科技重大专项(2019ZD16SN007)资助
详细信息
    通讯作者:

    E-mail: chh@dicp.ac.cn

  • 中图分类号: X511

Simultaneous removal of NO and CO over Ni-Ce bifunctional catalyst supported by modified activated coke at oxygen-rich condition

Funds: The project was supported by the Dalian Science and Technology Major Project (2019ZD16SN007)
  • 摘要: 采用等体积浸渍法制备的改性活性焦(AC-N)负载Ni-Ce过渡金属催化剂可同时催化氨选择性催化还原(NH3-SCR)反应和CO氧化反应,实现低温富氧条件下NO和CO的一体化脱除。Ni-Ce/AC-N催化剂在175–250 ℃可实现NO和CO的高效转化,NO和CO转化率在175−250 ℃均高于95%。硝酸改性后活性焦载体与金属组分之间有更强烈的相互作用,有利于活性组分在催化剂表面更好的分散,提高催化剂的比表面积和氧化还原能力;Ni、Ce之间存在协同作用,使得催化剂表面出现更多的Ni2+和 Ce3+,有利于催化活性提高。
  • FIG. 1686.  FIG. 1686.

    FIG. 1686.  FIG. 1686.

    图  1  AC、AC-N、Ni/AC、Ni/AC-N、Ni-Ce/AC、Ni-Ce/AC-N 催化剂NO、CO转化率和N2选择性

    Figure  1  NO, CO conversion and N2 selectivity AC, AC-N, Ni/AC, Ni/AC-N, Ni-Ce/AC, Ni-Ce/AC-N (a): SCR activities; (b): CO oxidation activities; (c): N2 selectivity

    图  2  催化剂的N2吸附-脱附等温曲线

    Figure  2  N2 adsorption-desorption isotherm of all catalysts

    图  3  催化剂AC-N、Ni/AC、Ni/AC-N、Ni-Ce/AC、Ni-Ce/AC-N的XRD谱图

    Figure  3  XRD patterns of AC, AC-N, Ni/AC, Ni/AC-N, Ni-Ce/AC and Ni-Ce/AC-N

    图  4  AC、AC-N、Ni/AC、Ni/AC-N、Ni-Ce/AC、Ni-Ce/AC-N催化剂红外光谱谱图

    Figure  4  Infrared spectra of AC, AC-N, Ni/AC, Ni/AC-N, Ni-Ce/AC and Ni-Ce/AC-N

    图  5  AC、AC-N、Ni/AC、Ni/AC-N、Ni-Ce/AC、Ni-Ce/AC-N催化剂H2-TPR谱图

    Figure  5  H2-TPR profiles of AC, AC-N, Ni/AC, Ni/AC-N, Ni-Ce/AC and Ni-Ce/AC-N

    图  6  Ni 2p、Ce 3d和O 1s轨道 XPS谱图

    Figure  6  XPS profiles of Ni 2p (a), Ce 3d (b) and O 1s (c)

    图  7  催化剂的NH3-TPD谱图

    Figure  7  NH3-TPD profiles of the catalysts

    表  1  催化剂的织构性质

    Table  1  Textural properties of all catalyst samples

    SampleSBET /(m2·g−1)vtotal /(mL·g−1)dmean /nm
    AC201.50.110.8
    AC-N242.60.130.4
    Ni/AC234.10.140.4
    Ni/AC-N271.20.130.4
    Ni-Ce/AC224.30.120.4
    Ni-Ce/AC-N280.40.170.4
    下载: 导出CSV

    表  2  元素价态的相对含量

    Table  2  Relative content of element valence state

    SampleComponents/%
    Ni2+Ce3+Oβ
    Ni/AC79.8559.45
    Ni/AC-N82.6569.54
    Ni-Ce/AC85.7817.6955.22
    Ni-Ce/AC-N88.4221.0761.01
    下载: 导出CSV
  • [1] 王博, 边瑶, 封硕, 王少奇, 沈伯雄. 铌元素改性V2O5-WO3/TiO2脱硝催化剂降低SO2氧化率的研究[J]. 燃料化学学报,2022,50(4):503−512. doi: 10.1016/S1872-5813(21)60177-9

    WANG Bo, BIAN Yao, FENG Shuo, WANG Shao-qi, SHEN Bo-xiong. Reduction of SO2 oxidation rate by Niobium modified V2O5-WO3/TiO2 denitrification catalyst[J]. J Fuel Chem Technol,2022,50(4):503−512. doi: 10.1016/S1872-5813(21)60177-9
    [2] 陈传敏, 常昊, 贾文波, 刘松涛, 曹悦, 陈若希, 乔钏熙. Mn掺杂VWTi催化剂宽温区脱硝实验研究[J]. 燃料化学学报,2022,50(3):357−365. doi: 10.19906/j.cnki.JFCT.2021085

    CHEN Chuan-min, CHANG Hao, JIA Wen-bo, LIU Song-tao, CAO Yue, CHEN Ruo-xi, QIAO Chuan-xi. Experimental study on Wide temperature range denitrification of Mn Doped VWTi catalyst[J]. J Fuel Chem Technol,2022,50(3):357−365. doi: 10.19906/j.cnki.JFCT.2021085
    [3] LU C, WEY M. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas[J]. Fuel Process Technol,2007,88(6):557−567. doi: 10.1016/j.fuproc.2007.01.004
    [4] GAO F, YAN H, TANG X, YI H, ZHAO S, YU Q, NI S. Simultaneous removal of gaseous CO and elemental mercury over Cu-Co modified activated coke at low temperature[J]. J Environ Sci,2021,101:36−48. doi: 10.1016/j.jes.2020.05.029
    [5] 解炜, 王利斌, 盛明, 吴涛, 李兰廷, 吴倩. 活性焦在钢铁行业的应用及趋势分析 [J] 煤质技术, 2021, 36(1): 10−19.

    XIE Wei, WANG Li-bin, SHENG Ming, WU Tao, LI Lan-ting, WU Qian. Application and trend analysis of activated coke in steel industry[J]. Coal Qual Technol, 2021, 36(1): 10−19.
    [6] LI Y, ZHANG X, LIN H, YU F, CHEN Z, LI C, LIU Z, YU J, GAO S. The simultaneous removal of SO2 and NO from flue gas over activated coke in a multi-stage fluidized bed at low temperature[J]. Fuel,2020,275:117862.
    [7] LI Y, LIN Y, CHENG C, HAO J, ZHU T. On the nature of nitrogen-containing groups in the SCR of NO over functionalized activated coke[J]. Waste Biomass Valorization,2018,11(5):1691−1699.
    [8] DENG W, HU M, MA J, SU Y, RUAN R. Structural and functional relationships of activated char briquettes from pyrolysis of sewage sludge for methylene blue removal[J]. J Clean Prod,2020,259:12097.
    [9] YE M, CHENG C, LI Y, LIN Y, WANG X, CHEN G. Enhancement of the denitrification efficiency over low-rank activated coke by doping with transition metal oxides[J]. Can J Chem Eng,2020,98(6):1390−1397. doi: 10.1002/cjce.23698
    [10] GE T, ZHU B, SUN Y, SONG W, FANG Q, ZHONG Y. Investigation of low-temperature selective catalytic reduction of NOx with ammonia over Cr-promoted Fe/AC catalysts[J]. Environ Sci Pollut Res,2019,26(32):33067−33075. doi: 10.1007/s11356-019-06301-9
    [11] QIE Z, ZHANG Z, SUN F, WANG L, PI X, GAO J, ZHAO G. Effect of pore hierarchy and pore size on the combined adsorption of SO2 and toluene in activated coke[J]. Fuel,2019,257:116090.
    [12] WANG C, SANI Z, TANG X, WANG Y, YI H, GAO F. Novel Ni-Mn Bi-oxides doped active coke catalysts for NH3-SCR De-NOx at Low temperature[J]. ChemistrySelect,2020,5(21):6494−6503. doi: 10.1002/slct.202001489
    [13] GAO F, TANG X, SANI Z, YI H, ZHAO S, YU Q, ZHOU Y, SHI Y, NI S. Spinel-structured Mn-Ni nanosheets for NH3-SCR of NO with good H2O and SO2 resistance at low temperature[J]. Catal Sci Technol,2020,10(22):7486−7501. doi: 10.1039/D0CY01337D
    [14] ZHANG Z, LI R, WANG M, LI Y, TONG Y, YANG P, ZHU Y. Two steps synthesis of CeTiOx oxides nanotube catalyst: Enhanced activity, resistance of SO2 and H2O for low temperature NH3-SCR of NOx[J]. Appl Catal B: Environ,2021,282:119542.
    [15] CHEN L, NIU X, LI Z, DONG Y, ZHANG Z, YUAN F, ZHU Y. Promoting catalytic performances of Ni-Mn spinel for NH3-SCR by treatment with SO2 and H2O[J]. Catal Commun,2016,85:48−51.
    [16] GUO J, LIANG J. CHU Y, YIN H, CHEN Y. Influence of Ni species of Ni/AC catalyst on its desulfurization performance at low temperature[J]. Chin J Catal,2020,3:278−282.
    [17] AHN S Y, NA H S, JEON K W, LEE Y L, KIM K J, SHIM J O, ROH H S. Effect of Cu/CeO2 catalyst preparation methods on their characteristics for low temperature water-gas shift reaction: A detailed study[J]. Catal Today,2020,352:166−174. doi: 10.1016/j.cattod.2019.11.017
    [18] YANG J, REN S, ZHANG T, SU Z, LONG H, KONG M, LU Y. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO[J]. Chem Eng J,2020,379:122398.
    [19] YAO L, LIU Q, MOSSIN S, NIELSEN D, KONG M, JIANG L, YANG J, REN S, WEN J. Promotional effects of nitrogen doping on catalytic performance over manganese-containing semi-coke catalysts for the NH3-SCR at low temperatures[J]. J Hazard Mater,2020,387:121704.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  136
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2021-12-22
  • 录用日期:  2022-01-02
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回