留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤中砷与硫洗选过程迁移和燃烧过程释放特性

刘轩 赵元财 滕阳 张锴

刘轩, 赵元财, 滕阳, 张锴. 煤中砷与硫洗选过程迁移和燃烧过程释放特性[J]. 燃料化学学报(中英文), 2022, 50(7): 787-797. doi: 10.1016/S1872-5813(21)60193-7
引用本文: 刘轩, 赵元财, 滕阳, 张锴. 煤中砷与硫洗选过程迁移和燃烧过程释放特性[J]. 燃料化学学报(中英文), 2022, 50(7): 787-797. doi: 10.1016/S1872-5813(21)60193-7
LIU Xuan, ZHAO Yuan-cai, TENG Yang, ZHANG Kai. Migration behaviors of arsenic and sulfur from coal during washing process and their release characteristics during combustion process[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 787-797. doi: 10.1016/S1872-5813(21)60193-7
Citation: LIU Xuan, ZHAO Yuan-cai, TENG Yang, ZHANG Kai. Migration behaviors of arsenic and sulfur from coal during washing process and their release characteristics during combustion process[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 787-797. doi: 10.1016/S1872-5813(21)60193-7

煤中砷与硫洗选过程迁移和燃烧过程释放特性

doi: 10.1016/S1872-5813(21)60193-7
基金项目: 国家自然科学基金与山西煤基低碳联合基金重点项目(U1910215)资助
详细信息
    通讯作者:

    E-mail: kzhang@ncepu.edu.cn

  • 中图分类号: TQ53

Migration behaviors of arsenic and sulfur from coal during washing process and their release characteristics during combustion process

Funds: The project was supported by the National Natural Science Foundation of China (U1910215).
  • 摘要: 以宁武煤田两个洗煤厂原煤及洗选产物为研究对象,采用微波消解与氢化物发生-原子荧光光谱相结合方法考察了洗煤过程硫和砷迁移规律,采用砷质量平衡验证的逐级化学提取法探讨了原煤、精煤、矸石、洗中煤和煤泥燃烧后硫和砷形态转化与释放特性及其依赖性。原煤中20%−28%硫和砷迁移至精煤中,46%−61%迁移至矸石中,Pearson相关系数结果表明,样品中无机矿物质是硫和砷迁移的控制因素。精煤中有机硫和砷提高至30%−50%,而矸石中无机硫和砷占比达90%以上,说明原煤及洗选产物中砷与硫赋存形态具有一定相关性。精煤中较多的有机硫和砷在500 ℃以下伴随水分和挥发分析出呈现明显释放特征,矸石中以无机态为主的砷则主要在500−1000 ℃伴随黄铁矿和硫酸盐等矿物质分解与硫一起释放,体现了原煤及洗选产物燃烧时硫与砷释放的同步性。精煤中硫和砷释放速率最快,300和200 s分别达到最大释放率80%−95%和60%−75%;矸石中最慢,300 s时砷达到最大释放率40%−45%,而硫600 s时仍未达最大释放率;洗中煤和原煤介于精煤和矸石之间,样品燃烧时硫和砷赋释放速率差异是由其固有赋存形态差异所致。
  • FIG. 1677.  FIG. 1677.

    FIG. 1677.  FIG. 1677.

    图  1  逐级化学提取流程示意图

    Figure  1  Schematic diagram of sequential-chemical-extraction procedure

    图  2  燃烧实验装置示意图

    Figure  2  Schematic diagram of the combustion experimental system

    图  3  两个洗煤厂洗煤产物中灰分、硫和砷质量分布

    Figure  3  Distribution of ash, sulfur and arsenic in coal washery products from two coal washing plants

    (a): 1# coal washing plant; (b): 2# coal washing plant

    图  4  两个洗煤厂洗选产物中灰分、硫和砷含量相对于原煤的迁移率

    Figure  4  Migration rate of ash, sulfur and arsenic in coal washery products relative to raw coal from two coal washing plants

    (a): 1# coal washing plant ; (b): 2# coal washing plant

    图  5  两个洗煤厂样品中砷含量与灰分、硫含量的相关性

    Figure  5  Correlation between arsenic content and ash or sulfur content in samples from two coal washing plants

    图  6  两个洗煤厂原煤及其洗煤产物中硫和砷形态分布

    Figure  6  Speciation distribution of sulfur and arsenic in raw coal and washery products from two coal washing plants

    (a): 1# coal washing plant;(b): 2# coal washing plant

    图  7  两个洗煤厂原煤及其洗煤产物燃烧过程硫和砷释放特性

    Figure  7  Release characteristics curves of sulfur and arsenic during combustion process of raw coal and washery products from two coal washing plants

    (a): 1# coal washing plant;(b): 2# coal washing plant

    图  8  两个洗煤厂原煤及其洗选产物不同温度燃烧产物中硫和砷的形态分布

    Figure  8  Speciation distribution of sulfur and arsenic in different temperatures combustion products of raw coal and washery products from two coal washing plants

    (a): 1# coal washing plant;(b): 2# coal washing plant

    图  9  两个洗煤厂原煤及其洗选产物中硫和砷1000 ℃恒温燃烧释放特性

    Figure  9  Release characteristics curves of sulfur and arsenic during 1000 ℃ isothermal combustion process of raw coal and washery products from two coal washing plants

    (a): 1# coal washing plant;(b): 2# coal washing plant

    表  1  样品的工业分析以及硫和砷含量

    Table  1  Proximate analysis, sulfur and arsenic content of samples

    SampleProximate analysis wad/%Sulfur contentArsenic content
    MAVFCaverage value
    /%
    RSD
    /%
    average value
    /(μg·g−1)
    RSD
    /%
    Plant 1 Raw coal 1.36 52.74 16.96 28.94 1.37 ± 0.06 4.28 3.97 ± 0.14 3.49
    Cleaned coal 1.29 40.23 21.18 37.30 0.82 ± 0.03 3.92 2.31 ± 0.06 2.75
    Middling coal 1.37 51.71 17.90 29.02 1.26 ± 0.08 5.99 3.52 ± 0.15 4.31
    Coal gangue 1.45 74.79 10.56 13.20 3.06 ± 0.12 4.01 7.08 ± 0.42 5.87
    Coal slime 2.40 38.55 20.64 38.41 1.05 ± 0.03 2.87 2.58 ± 0.07 2.84
    Plant 2 Raw coal 1.81 45.65 17.19 35.35 2.16 ± 0.07 3.22 3.08 ± 0.08 2.47
    Cleaned coal 0.98 34.04 23.01 41.97 1.14 ± 0.04 3.83 2.04 ± 0.07 3.27
    Middling coal 1.33 39.47 20.36 38.84 1.67 ± 0.08 4.93 2.63 ± 0.11 4.06
    Coal gangue 0.60 79.19 9.08 11.13 6.02 ± 0.32 5.30 7.87 ± 0.45 5.73
    Coal slime 1.99 33.68 24.17 40.16 1.23 ± 0.04 3.07 2.85 ± 0.08 2.80
    note:ad: air dried basis; RSD: relative standard deviation
    下载: 导出CSV
  • [1] CHANG L, YANG J P, ZHAO Y C, LIU H, ZHANG J Y, ZHENG C G. Behavior and fate of As, Se, and Cd in an ultra-low emission coal-fired power plant[J]. J Clean Prod,2019,209:722−730. doi: 10.1016/j.jclepro.2018.10.270
    [2] XIE J, NIU X D, HE K Q, SHI M D, YU S J, YUAN C G, LIU J F. Arsenic and selenium distribution and speciation in coal and coal combustion by-products from coal-fired power plants[J]. Fuel,2021,292:120228. doi: 10.1016/j.fuel.2021.120228
    [3] GONG H Y, HUANG Y D, HU H Y, FU B, MA T T, LI S, XIE K, LUO G, YAO H. Insight of particulate arsenic removal from coal-fired power plants[J]. Fuel,2019,257:116018. doi: 10.1016/j.fuel.2019.116018
    [4] 苏银皎, 滕阳, 张锴, 刘轩, 张永红, 冀俊伟. 洗选过程对宁武煤中汞迁移和热释放的影响特性[J]. 燃料化学学报,2021,49(3):274−281.

    SU Yin-jiao, TENG Yang, ZHANG Kai, LIU Xuan, ZHANG Yong-hong, JI Jun-wei. Effect of washing process on mercury migration and emission of Ningwu coal[J]. J Fuel Chem Technol,2021,49(3):274−281.
    [5] QI X, ZHANG H J, ZHANG C Q, ZHU Z N, ZHEN K K, YANG L. The flotation behavior of coal-pyrite in high-sulfur coal[J]. Sep Sci Technol,2019,54(16):2718−2728. doi: 10.1080/01496395.2018.1550514
    [6] DUAN P P, WANG W F, SANG S X, QIAN F C, SHAO P, ZHAO X. Partitioning of hazardous elements during preparation of high-uranium coal from Rongyang, Guizhou, China[J]. J Geochem Explor,2018,185:81−92. doi: 10.1016/j.gexplo.2017.10.022
    [7] LI W W, TANG Y G. Sulfur isotopic composition of superhigh-organic-sulfur coals from the Chenxi coalfield, southern China[J]. Int J Coal Geol,2014,127:3−13. doi: 10.1016/j.coal.2014.02.006
    [8] QI Y Q, LI W, CHEN H K, LI B Q. Sulfur release from coal in fluidized-bed reactor through pyrolysis and partial oxidation with low concentration of oxygen[J]. Fuel,2004,83(16):2189−2194. doi: 10.1016/j.fuel.2004.06.009
    [9] 李冬, 张成, 夏季, 郑艳, 杨立, 陈刚. 煤中形态硫在不同燃烧前预处理过程的脱除行为[J]. 工程热物理学报,2013,34(11):2170−2173.

    LI Dong, ZHANG Cheng, ZIA Ji, ZHENG Yan, YANG Li, CHEN Gang. The removal behavior of sulfur forms in coal during different pretreatment before coal combustion[J]. J Eng Thermophys,2013,34(11):2170−2173.
    [10] GERALD H L, JAISEN N K, ROE-HOAN Y. An evaluation of coal preparation technologies for controlling trace element emissions[J]. Fuel Process Technol,2000,65−66:407−422.
    [11] 朱振武, 禚玉群. 煤炭洗选中有害痕量元素的迁移与脱除[J]. 煤炭学报,2016,41(10):2434−2440.

    ZHU Zhen-wu, ZHUO Yu-qun. Migration and removal of toxic trace elements during coal washing[J]. J China Coal Soc,2016,41(10):2434−2440.
    [12] HUGGINS F E, SEIDU L B A, SHAH N, HUFFMAN G P, HONAKER R Q, KYGER J R, HIGGINS B L, ROBERTSON J D, PAL S, SEEHRA M S. Elemental modes of occurrence in an Illinois #6 coal and fractions prepared by physical separation techniques at a coal preparation plant[J]. Int J Coal Geol,2009,78(1):65−76. doi: 10.1016/j.coal.2008.10.002
    [13] ZHAO C, LUO K L. Sulfur, arsenic, fluorine and mercury emissions resulting from coal-washing byproducts: A critical component of China's emission inventory[J]. Atmos Environ,2017,152:270−278. doi: 10.1016/j.atmosenv.2016.12.001
    [14] 王明仕, 闫国龙, 赵丽, 郑宝山, 朱建明. 不同砷含量下煤中砷与硫的洗脱研究[J]. 煤炭转化,2008,31(1):79−81.

    WANG Ming-shi, YAN Guo-long, ZHAO Li, ZHENG Bao-shan, ZHU Jian-ming. Study on washing of arsenic and sulfur of coals in different range of arsenic contents[J]. Coal Convers,2008,31(1):79−81.
    [15] 曹艳芝, 郭少青, 翟晋栋. 煤矸石中汞和砷的赋存形态研究[J]. 煤田地质与勘探,2017,45(1):26−30.

    CAO Yan-zhi, GUO Shao-qing, ZHAI Jin-dong. The mode of occurrence of mercury and arsenic in coal gangues[J]. Coal Geol & Explor,2017,45(1):26−30.
    [16] PARK H, WANG L G, YUN J H. Coal beneficiation technology to reduce hazardous heavy metals in fly ash[J]. J Hazard Mater,2021,416:125853. doi: 10.1016/j.jhazmat.2021.125853
    [17] YAN Y L, YANG C, PENG L, LI R M, BAI H L. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmos Environ,2016,143:261−269. doi: 10.1016/j.atmosenv.2016.08.052
    [18] ZHOU C C, LIU G J, FANG T, WU D, LAM P K S. Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue[J]. Fuel,2014,135:1−8. doi: 10.1016/j.fuel.2014.06.034
    [19] ZHENG C H, WANG L, ZHANG Y X, ZHANG J, ZHAO H T, ZHOU J S, GAO X, CEN K F. Partitioning of hazardous trace elements among air pollution control devices in ultra-low-emission coal-fired power plants[J]. Energy Fuels,2017,31(6):6334−6344. doi: 10.1021/acs.energyfuels.7b00894
    [20] TIAN H Z, WANG Y, XUE Z G, QU Y P, CHAI F H, HAO J M. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007[J]. Sci Total Environ,2011,409(16):3078−3081. doi: 10.1016/j.scitotenv.2011.04.039
    [21] HUANG Y D, GONG H Y, HU H Y, FU B, YUAN B, LI S, LUO G Q, YAO H. Migration and emission behavior of arsenic and selenium in a circulating fluidized bed power plant burning arsenic/selenium-enriched coal[J]. Chemosphere,2021,263:127920. doi: 10.1016/j.chemosphere.2020.127920
    [22] 刘轩, 苏银皎, 赵元财, 滕阳, 张锴, 张永红. 电厂入炉煤及其副产物中砷的分布和富集特性[J]. 燃料化学学报,2020,48(12):1513−1519.

    LIU Xuan, SU Yin-jiao, ZHAO Yuan-cai, TENG Yang, ZHANG Kai, ZHANG Yong-hong. Distribution and enrichment characteristics of arsenic in feed-coal and by-products of coal–fired power plants[J]. J Fuel Chem Technol,2020,48(12):1513−1519.
    [23] LUO M, QIN Y J, CAI J J, QIAN L L, WANG S X, ZHANG H Y, ZHOU L Z, LIU P. Sulfur release and migration characteristics in chemical looping combustion of high-sulfur coal[J]. Process Saf Environ,2021,151:1−9. doi: 10.1016/j.psep.2021.05.004
    [24] 任强, 刘建忠, 周俊虎, 叶琳, 岑可法. 石煤燃烧硫析出动态特性[J]. 煤炭学报,2006,31(1):99−103.

    REN Qiang, LIU Jian-zhong, ZHOU Jun-hu, YE Lin, CEN Ke-fa. Dynamic characteristic of sulfur release during stone coal combustion[J]. J China Coal Soc,2006,31(1):99−103.
    [25] FRIGGE L, STROHLE J, EPPLE B. Release of sulfur and chlorine gas species during coal combustion and pyrolysis in an entrained flow reactor[J]. Fuel,2017,201:105−110. doi: 10.1016/j.fuel.2016.11.037
    [26] HOU J L, MA Y, LI S Y, SHANG W Z. A comparative study on characteristics of sulfur and nitrogen transformation and gaseous emission for combustion of bituminous coal and char[J]. Carbon Resour Convers,2018,1(1):86−93. doi: 10.1016/j.crcon.2018.04.004
    [27] LU H L, CHEN H K, LI W, LI B Q. Transformation of arsenic in Yima coal during fluidized-bed pyrolysis[J]. Fuel,2004,83(6):645−650. doi: 10.1016/j.fuel.2003.08.020
    [28] FU B, LIU G, SUUN M, HOWER J C, HU G, WU D. A comparative study on the mineralogy, chemical speciation, and combustion behavior of toxic elements of coal beneficiation products[J]. Fuel,2018,228:297−308. doi: 10.1016/j.fuel.2018.04.085
    [29] ZHANG S R, JIANG X G, LV G J, NIXANG A, JIN Y Q, YAN J H, LIN X L, SONG H B, CAO J J. Effect of chlorine, sulfur, moisture and ash content on the partitioning of As, Cr, Cu, Mn, Ni and Pb during bituminous coal and pickling sludge co-combustion[J]. Fuel,2019,239:601−610. doi: 10.1016/j.fuel.2018.11.061
    [30] FU B, LIU G J, Sun M, HOWER J C, MIAN M M, WU D, WANG R W, HU G Q. Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler[J]. Environ Pollut,2018,242:1950−1960. doi: 10.1016/j.envpol.2018.07.066
    [31] ZHOU C C, LIU G J, YAN Z C, FANG T, WANG R W. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel,2012,97:644−650. doi: 10.1016/j.fuel.2012.02.027
    [32] LIU H M, WANG C B, ZOU C, ZHANG Y, WANG J W. Simultaneous volatilization characteristics of arsenic and sulfur during isothermal coal combustion[J]. Fuel,2017,203:152−161. doi: 10.1016/j.fuel.2017.04.101
    [33] 张锴, 刘轩, 苏银皎, 赵元财, 滕阳, 齐娜娜. 一种测定燃煤电厂煤及其燃烧副产物中砷、硒、铅的方法: CN110487758B[P]. 2021−05−14.

    ZHANG Kai, LIU Xuan, SU Yin-jiao, ZHAO Yuan-cai, TENG Yang, QI Na-na. Method for determining arsenic, selenium and lead in coal-fired power plant coals and combustion byproducts thereof: CN110487758B[P]. 2021-05-14.
    [34] TESSIER P, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem,1979,51(7):844−851. doi: 10.1021/ac50043a017
    [35] URE A M, QUEVAUVILLER PH, MUNTAU H, GRIEPINK B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities[J]. Int J Environ Anal Chem,1993,51(1/4):135−151. doi: 10.1080/03067319308027619
    [36] Querol X, JUAN R, LOPEZ-SOLER A, FERNANDEZ-TURIEL J, RUIZ C R. Mobility of trace elements from coal and combustion wastes[J]. Fuel,1996,75(7):821−838. doi: 10.1016/0016-2361(96)00027-0
    [37] SAHUQUILLO A, LOPEZ-SANCHEZ, RUBIO R, RAURET G, THOMAS R P, DAVIDSON C M, URE A M. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure[J]. Anal Chim Acta,1999,382(3):317−327. doi: 10.1016/S0003-2670(98)00754-5
    [38] US EPA Method 29, Determination of metals emissions from stationary sources[S].
    [39] LIU G J, ZHENG L G, ZHANG Y, QI C C, CHEN Y W, PENG Z C. Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation, Yanzhou Coalfield, China[J]. Int J Coal Geol,2007,71(2):371−385.
    [40] 李扬, 鲁子龙, 杨赫, 靳立军, 胡浩权. 煤灰化过程中砷/硒/铅的释放及矿物的变化规律[J]. 燃料化学学报,2022,50(1):11−18.

    LI Yang, LU Zi-long, YANG He, JIN Li-jun, HU Hao-quan. Release characteristics of arsenic, selenium, lead and transformation of minerals during ashing process of coal[J]. J Fuel Chem Technol,2022,50(1):11−18.
    [41] BULUT G, YENIAL Ü, EMIROGLU E, SORKECI A A. Arsenic removal from aqueous solution using pyrite[J]. J Clean Prod,2014,84:526−532. doi: 10.1016/j.jclepro.2013.08.018
    [42] CANTU J, GONZALEZ L E, GOODSHIP J, CONRERAS M, JOSEPH M, GARZA C, EUBANKS T M, PARSONS J G. Removal of arsenic from water using synthetic Fe7S8 nanoparticles[J]. Chem Eng J,2016,290:428−437. doi: 10.1016/j.cej.2016.01.053
    [43] ZHAO B, CHEN G, QIN L B, HAN Y X, ZHANG Q, CHEN W S, HAN J. Effect of coal blending on arsenic and fine particles emission during coal combustion[J]. J Clean Prod,2021,311:127645. doi: 10.1016/j.jclepro.2021.127645
    [44] 邹潺, 王春波, 郭辉, 王贺飞. 燃煤过程中砷的赋存形态及其挥发特性[J]. 化工学报,2018,69(4):1670−1677.

    ZOU Chan, WANG Chun-bo, GUO Hui, WANG He-fei. Volatilization characteristics and mode of occurrence of arsenic during coal combustion[J]. J Chem Ind Eng,2018,69(4):1670−1677.
    [45] LI D, ZHANG C, XIA J, TAN P, YANG L, CHEN G. Evolution of organic sulfur in the thermal upgrading process of Shengli lignite[J]. Energy Fuels,2013,27(6):3446−3453.
    [46] SAHINOGLU E. Cleaning of high pyritic sulfur fine coal via flotation[J]. Adv Powder Technol,2018,29(7):1703−1712. doi: 10.1016/j.apt.2018.04.005
    [47] GUO R X, YANG J L, LIU D Y, LIU Z Y. Transformation behavior of trace elements during coal pyrolysis[J]. Fuel Process Technol,2002,77−78:137−143.
    [48] LIU H M, WANG C B, ZOU C, ZHANG Y, ANTHONY E. Vaporization model of arsenic during single-particle coal combustion: Numerical simulation[J]. Fuel,2021,287:119412. doi: 10.1016/j.fuel.2020.119412
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  133
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-01-03
  • 网络出版日期:  2022-01-22
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回