留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一步法构筑离子液体功能化MOF材料用于常压催化CO2环加成反应

李东娜 邱明月 张奇日 易群 范海明 李向远 李剑川 史利娟 张鼎

李东娜, 邱明月, 张奇日, 易群, 范海明, 李向远, 李剑川, 史利娟, 张鼎. 一步法构筑离子液体功能化MOF材料用于常压催化CO2环加成反应[J]. 燃料化学学报(中英文), 2022, 50(7): 824-831. doi: 10.1016/S1872-5813(21)60195-0
引用本文: 李东娜, 邱明月, 张奇日, 易群, 范海明, 李向远, 李剑川, 史利娟, 张鼎. 一步法构筑离子液体功能化MOF材料用于常压催化CO2环加成反应[J]. 燃料化学学报(中英文), 2022, 50(7): 824-831. doi: 10.1016/S1872-5813(21)60195-0
LI Dong-na, QIU Ming-yue, ZHANG Qi-ri, YI Qun, FAN Hai-ming, LI Xiang-yuan, LI Jian-chuan, SHI Li-juan, ZHANG Ding. One-pot construction of ionic liquid-functionalized MOF material as the catalyst for CO2 cycloaddition under atmospheric pressure[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 824-831. doi: 10.1016/S1872-5813(21)60195-0
Citation: LI Dong-na, QIU Ming-yue, ZHANG Qi-ri, YI Qun, FAN Hai-ming, LI Xiang-yuan, LI Jian-chuan, SHI Li-juan, ZHANG Ding. One-pot construction of ionic liquid-functionalized MOF material as the catalyst for CO2 cycloaddition under atmospheric pressure[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 824-831. doi: 10.1016/S1872-5813(21)60195-0

一步法构筑离子液体功能化MOF材料用于常压催化CO2环加成反应

doi: 10.1016/S1872-5813(21)60195-0
基金项目: 国家自然科学基金(U1810125, 51776133, U1710110),榆林学院中国科学院洁净能源创新研究院联合基金(YLU-DNL Fund 2021021),山西省自然科学基金面上基金(201901D111082),山东省油田化学重点实验室开放基金和中央高校基本科研业务费专项资金(19CX05006A)资助
详细信息
    作者简介:

    李东娜(1994–),女,硕士研究生,研究方向为绿色化学。E-mail:1746647622@qq.com。共同作者:

    邱明月(1996–),女,硕士研究生,研究方向为绿色化学。E-mail:qmy112616@163.com

    通讯作者:

    Tel:15364834561,E-mail:shilijuan@tyut.edu.cn

  • 中图分类号: O643.3; TQ426

One-pot construction of ionic liquid-functionalized MOF material as the catalyst for CO2 cycloaddition under atmospheric pressure

Funds: The project was supported by the National Natural Science Foundation of China (U1810125, 51776133, U1710110), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021021), the Natural Science Foundation of Shanxi Province (201901D111082) and the Opening Fund of Shandong Key Laboratory of Oilfield Chemistry and Fundamental Research Funds for the Central Universities (19CX05006A)
  • 摘要: 采用原位组装法将羧基离子液体1-丙酸-3-甲基咪唑氯(CFIL)一步固载到一种金属有机框架(MOF)材料NH2-MIL-101上,制备了具有多重活性位点的非均相催化剂NH2-FMOF-CFIL,对其在CO2和环氧氯丙烷的(ECH)环加成反应中的催化性能进行了研究。傅里叶变换红外光谱(FT-IR)和元素分析结果证实离子液体CFIL引入到MOF材料中,粉末X射线衍射(PXRD)、扫描电子显微镜(SEM)和N2吸脱附结果表明离子液体的引入不会破坏NH2-MIL-101的MOF晶体结构或堵塞孔道,但能诱导产生介孔。催化反应表征结果显示,离子液体CFIL结构中咪唑N作为Lewis碱性位点活化CO2,Cl作为亲核试剂促进环氧氯丙烷开环,并与MOF材料NH2-MIL-101上的Cr3+和氨基产生协同作用,诱导在温和条件(0.1 MPa CO2、25–70 ℃、无溶剂和助剂)下,高效催化转化CO2生成氯丙烯碳酸酯,反应24 h氯丙烯碳酸酯收率可达99%,且循环使用5次后,催化剂晶体结构和高活性仍能保持稳定。
  • FIG. 1680.  FIG. 1680.

    FIG. 1680.  FIG. 1680.

    图  1  离子液体CFIL的反应方程式

    Figure  1  Reaction formula for the synthesis of ionic liquid CFIL

    图  2  NH2-MIL-101的反应方程式[23]

    Figure  2  Reaction formula for the synthesis of NH2-MIL-101[23]

    图  3  NH2-FMOF-CFIL的反应方程式

    Figure  3  Reaction formula for the synthesis of NH2-FMOF-CFIL composite

    图  4  CFIL、NH2-MIL-101和NH2-FMOF-CFIL的红外光谱谱图

    Figure  4  FT-IR spectra of CFIL, NH2-MIL-101 and NH2-FMOF-CFIL

    图  5  NH2-MIL-101和NH2-FMOF-CFIL的PXRD谱图

    Figure  5  PXRD patterns of NH2-MIL-101 and NH2-FMOF-CFIL

    图  6  (a) NH2-MIL-101 SEM照片(b) NH2-FMOF-CFIL SEM照片

    Figure  6  SEM images of NH2-MIL-101 (a) and NH2-FMOF-CFIL (b)

    图  7  N2吸附-脱附曲线 (a) 和BJH孔径分布 (b)

    Figure  7  (a) N2 adsorption/desorption isotherms and (b) BJH pore size distribution

    图  8  NH2-MIL-101和NH2-FMOF-CFIL的TGA曲线 (a) 和DTG曲线 (b)

    Figure  8  TGA (a) and DTG curves (b) of NH2-MIL-101 and NH2-FMOF-CFIL

    图  9  CFIL、NH2-MIL-101和NH2-FMOF-CFIL在0.1 MPa、40 ℃下的催化性能

    Figure  9  Catalytic performance of CFIL, NH2-MIL-101 and NH2-FMOF-CFIL in the cycloaddition of CO2 with epichlorohydrin at 0.1 MPa and 40 ℃ for 24 h

    图  10  NH2-FMOF-CFIL在0.1 MPa、24 h、不同温度下的催化性能

    Figure  10  Effect of temperature on the cycloaddition of CO2 with epoxides to cyclic carbonates over NH2-FMOF-CFIL at 0.1 MPa for 24 h

    图  11  NH2-FMOF-CFIL在0.1 MPa、70 ℃、24 h下的催化循环性能

    Figure  11  Cyclic performance of the NH2-FMOF-CFIL catalyst in CO2 cycloaddition at 0.1 MPa, 70 ℃ and 24 h

    图  12  NH2-FMOF-CFIL新鲜和回收后的FT-IR (a) 和PXRD谱图 (b)

    Figure  12  FT-IR spectra (a) and PXRD patterns (b) of fresh and recovered NH2-FMOF-CFIL

    图  13  NH2-FMOF-CFIL催化机理示意图

    Figure  13  Proposed catalytic reaction mechanism for the cycloaddition of CO2 with epoxides to cyclic carbonates over NH2-FMOF-CFIL

    表  1  样品中N、C、O、H的质量分数

    Table  1  Contents of N, C, O and H in various samples

    SampleContent /%ILs /
    NCOHNH2-H2BDC
    NH2-MIL-101 3.67 30.06 35.32 3.73 0
    NH2-FMOF-CFIL 6.85 38.12 30.75 4.13 1∶4
    下载: 导出CSV

    表  2  NH2-MIL-101 和 NH2-FMOF-CFIL结构参数

    Table  2  Textural properties of NH2-MIL-101 and NH2-FMOF-CFIL

    SampleSBET/ (m2·g−1)vtotal/ (cm3·g−1)
    NH2-MIL-101 1586 0.73
    NH2-FMOF-CFIL 1032 0.88
    下载: 导出CSV
  • [1] WU Y F, XIAO Y, YUAN H, ZHANG Z Q, SHI S B, WEI R P, GAO L J, XIAO G M. Imidazolium ionic liquid functionalized UiO-66-NH2 as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates[J]. Microporous Mesoporous Mater,2021,310:110578. doi: 10.1016/j.micromeso.2020.110578
    [2] HUANG Z H, WANG Y Y, ZHANG N, ZHANG L H, DARENSBOURG D J. One-pot synthesis of ion-containing CO2-based polycarbonates using protic ionic liquids as chain transfer agents[J]. Macromolecules,2018,51(22):9122−9130. doi: 10.1021/acs.macromol.8b01834
    [3] SHI Z J, SU Q, YING T, TAN X, DENG L L, DONG L, CHENG W G. Ionic liquids with multiple active sites supported by SBA-15 for catalyzing conversion of CO2 into cyclic carbonates[J]. J CO2 Util,2020,39:101162. doi: 10.1016/j.jcou.2020.101162
    [4] WU Y F, SONG X H, XU S Q, CHEN Y, ODERINDE O, GAO L J, WEI R P, XIAO G M. Chemical fixation of CO2 into cyclic carbonates catalyzed by bimetal mixed MOFs: the role of the interaction between Co and Zn[J]. Dalton Trans,2020,49(2):312−321. doi: 10.1039/C9DT04027G
    [5] LIU Y Y, YANG Y M, SUN Q L, WANG Z Y, HUANG B B, DAI Y, QIN X Y, ZHANG X Y. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework[J]. ACS Appl Mater Inter,2013,5(15):7654−7658. doi: 10.1021/am4019675
    [6] AGUILA B, SUN Q, WANG X L, O'ROURKE E, AL-ENIZI A M, NAFADY A, MA S Q. Lower activation energy for catalytic reactions through host-guest cooperation within metal-organic frameworks[J]. Angew Chem Int Ed Eng,2018,57(32):10107−10111. doi: 10.1002/anie.201803081
    [7] WANG X, GAO W Y, NIU Z, WOJTAS L, PERMAN J A, CHEN Y S, LI Z, AGUILA B, MA S. A metal-metalloporphyrin framework based on an octatopic porphyrin ligand for chemical fixation of CO2 with aziridines[J]. Chem Commun,2018,54(10):1170−1173. doi: 10.1039/C7CC08844B
    [8] XIE Y Q, LIANG J, FU Y W, LIN J, WANG H, TU S, LI J. Poly(ionic liquid)s with high density of nucleophile /electrophile for CO2 fixation to cyclic carbonates at mild conditions[J]. J CO2 Util,2019,32:281−289. doi: 10.1016/j.jcou.2019.04.023
    [9] SUN Y X, HUANG H L, VARDHAN H, AGUILA B, ZHONG C, PERMAN J A, AL-ENIZI A M, NAFADY A, MA S. Facile approach to graft ionic liquid into MOF for improving the efficiency of CO2 chemical fixation[J]. ACS Appl Mater Inter,2018,10(32):27124−27130. doi: 10.1021/acsami.8b08914
    [10] ZHANG J W, LI X P, ZHU Z, CHANG T, FU X Y, HAO Y J, MENG X C, PANCHAL B J, QIN S J. Hydroxylamino-anchored poly(ionic liquid)s for CO2 fixation into cyclic carbonates at mild conditions[J]. Adv Sustainable Syst,2021,5(1):2000133. doi: 10.1002/adsu.202000133
    [11] JI H, NAVEEN K, LEE W, KIM T S, KIM D, CHO D H. Pyridinium-functionalized ionic metal-organic frameworks designed as bifunctional catalysts for CO2 fixation into cyclic carbonates[J]. ACS Appl Mater Inter,2020,12(22):24868−24876. doi: 10.1021/acsami.0c05912
    [12] GUO F, ZHANG X l. Metal-organic frameworks for the energy-related conversion of CO2 into cyclic carbonates[J]. Dalton Trans,2020,49(29):9935−9947. doi: 10.1039/D0DT01516D
    [13] PAL T K, DE D, BHARADWAJ P K. Metal-organic frameworks for the chemical fixation of CO2 into cyclic carbonates[J]. Coordin Chem Rev,2020,408:213173. doi: 10.1016/j.ccr.2019.213173
    [14] SU Q, QI Y Q, YAO X Q, CHENG W G, DONG L, CHEN S S, ZHANG S J. Ionic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO2 into cyclic carbonates[J]. Green Chem,2018,20(14):3232−3241. doi: 10.1039/C8GC01038B
    [15] HU J Y, MA J, LIU H Z, QIAN Q L, XIE C, HAN B X. Dual-ionic liquid system: an efficient catalyst for chemical fixation of CO2 to cyclic carbonates under mild conditions[J]. Green Chem,2018,20(13):2990−2994. doi: 10.1039/C8GC01129J
    [16] LI C, LIU F, ZHAO T X, GU J R, CHEN P, CHEN T. Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure[J]. Mol Catal,2021,511:111756. doi: 10.1016/j.mcat.2021.111756
    [17] ZOU M L, DAI W L, MAO P, LI B, MAO J, ZHANG S Q, YANG L X, LUO S L, LUO X B, ZOU J P. Integration of multifunctionalities on ionic liquid-anchored MIL-101(Cr): A robust and efficient heterogeneous catalyst for conversion of CO2 into cyclic carbonates[J]. Microporous Mesoporous Mater,2021,312:110750. doi: 10.1016/j.micromeso.2020.110750
    [18] 汤国辉. 金属有机骨架的功能化及其对二氧化碳捕获及转化性能的研究[D]. 太原:太原理工大学, 2017.

    TANG Guo-hui. Functionalization of metal-organic frameworks and their application in CO2 capture and conversion[D]. Taiyuan: Taiyuan University of Technology, 2017.
    [19] LIU D, LI G, LIU H. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition[J]. Appl Surf Sci,2018,428:218−225. doi: 10.1016/j.apsusc.2017.09.040
    [20] PARVEEN F, PATRA T, UPADHYAYULA S. Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids - A comparative study[J]. Carbohydr Polym,2016,135:280−284. doi: 10.1016/j.carbpol.2015.08.039
    [21] 李军, 许少勃, 刘婷婷, 张奇日, 史利娟. MIL-101固载化羧基咪唑离子液体在温和条件下催化CO2环加成反应[J]. 天然气化工,2018,43(4):35−40.

    LI Jun, XU Shao-bo, LIU Ting-ting, ZHANG Qi-ri, SHI Li-juan. MIL-101 immobilized carboxyl-functionalized imidazolium-based ionic liquid for the cycloaddition of CO2 under mild conditions[J]. Nat Gas Chem Ind,2018,43(4):35−40.
    [22] MEHRABADI Z, FAGHIHIAN H. Comparative photocatalytic performance of TiO2 supported on clinoptilolite and TiO2/Salicylaldehyde-NH2-MIL-101(Cr) for degradation of pharmaceutical pollutant atenolol under UV and visible irradiations[J]. J Photoch Photobio A,2018,356:102−111. doi: 10.1016/j.jphotochem.2017.12.042
    [23] CHONG S Y, WANG T T, CHENG L C, LV H Y, JI M. Metal-organic framework MIL-101-NH2-supported acetate-based butylimidazolium ionic liquid as a highly efficient heterogeneous catalyst for the synthesis of 3-aryl-2-oxazolidinones[J]. Langmuir,2019,35(2):495−503. doi: 10.1021/acs.langmuir.8b03153
    [24] YI Q, LIU T T, WANG X B, SHAN Y Y, LI X Y, DING M G, SHI L J, ZENG H B, WU Y C. One-step multiple-site integration strategy for CO2 capture and conversion into cyclic carbonates under atmospheric and cocatalyst/metal/solvent-free conditions[J]. Appl Catal B:Environ,2021,283:119620. doi: 10.1016/j.apcatb.2020.119620
    [25] WANG T T, SONG X D, LUO Q X, YANG X D, CHONG S Y, ZHANG J, JI M. Acid-base bifunctional catalyst: Carboxyl ionic liquid immobilized on MIL-101-NH2 for rapid synthesis of propylene carbonate from CO2 and propylene oxide under facile solvent-free conditions[J]. Microporous Mesoporous Mater,2018,267:84−92. doi: 10.1016/j.micromeso.2018.03.011
    [26] WANG K K, LI C F, LIANG Y X, HAN T T, HUANG H L, YANG Q Y, LIU D H, ZHONG C L. Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes[J]. Chem Eng J,2016,289:486−493. doi: 10.1016/j.cej.2016.01.019
    [27] REHMAN A, SALEEM F, JAVED F, IKHLAQ A, AHMAD S W, HARVEY A. Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides[J]. J Environ Chem Eng,2021,9(2):105113. doi: 10.1016/j.jece.2021.105113
    [28] FERREIRA A, FERREIRA C, TEIXEIRA J A, ROCHA F. Temperature and solid properties effects on gas-liquid mass transfer[J]. Chem Eng J,2010,162(2):743−752. doi: 10.1016/j.cej.2010.05.064
    [29] SAKAKURA T, KOHNO K. The synthesis of organic carbonates from carbon dioxide[J]. Chem Commun,2009,11:1312−1330.
    [30] LUO R C, LIU X Y, CHEN M, LIU B Y, FANG Y X. Recent advances on imidazolium-functionalized organic cationic polymers for CO2 adsorption and simultaneous conversion into cyclic carbonates[J]. ChemSusChem,2020,13(16):3945−396. doi: 10.1002/cssc.202001079
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  2691
  • HTML全文浏览量:  186
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-01-20
  • 录用日期:  2022-01-24
  • 网络出版日期:  2022-02-12
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回