留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丙烯对丙烷脱氢催化剂PtSnK/Al2O3炭沉积行为的影响

张向月 万海 高塬 鲍金奇 张海娟

张向月, 万海, 高塬, 鲍金奇, 张海娟. 丙烯对丙烷脱氢催化剂PtSnK/Al2O3炭沉积行为的影响[J]. 燃料化学学报(中英文), 2022, 50(7): 841-848. doi: 10.1016/S1872-5813(21)60196-2
引用本文: 张向月, 万海, 高塬, 鲍金奇, 张海娟. 丙烯对丙烷脱氢催化剂PtSnK/Al2O3炭沉积行为的影响[J]. 燃料化学学报(中英文), 2022, 50(7): 841-848. doi: 10.1016/S1872-5813(21)60196-2
ZHANG Xiang-yue, WAN Hai, GAO Yuan, BAO Jin-qi, ZHANG Hai-juan. Effect of propylene in feedstock on the coking behavior of PtSnK/Al2O3 catalyst of propane dehydrogenation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 841-848. doi: 10.1016/S1872-5813(21)60196-2
Citation: ZHANG Xiang-yue, WAN Hai, GAO Yuan, BAO Jin-qi, ZHANG Hai-juan. Effect of propylene in feedstock on the coking behavior of PtSnK/Al2O3 catalyst of propane dehydrogenation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 841-848. doi: 10.1016/S1872-5813(21)60196-2

丙烯对丙烷脱氢催化剂PtSnK/Al2O3炭沉积行为的影响

doi: 10.1016/S1872-5813(21)60196-2
基金项目: 辽宁省联合基金(U1908203)和辽宁省教育厅项目(L20190008)资助
详细信息
    通讯作者:

    E-mail:zhj_w@163.com

  • 中图分类号: O623.254.3

Effect of propylene in feedstock on the coking behavior of PtSnK/Al2O3 catalyst of propane dehydrogenation

Funds: The project was supported by Joint Fundation of Liaoning Province of China (U1908203) and Educational Commission of Liaoning Province of China (L20190008).
  • 摘要: 以含有不同比例丙烯的丙烷为原料进行丙烷脱氢反应,重点考察富丙烯条件下Pt基催化剂上的碳沉积行为。研究结果表明,原料中丙烯的存在加快了催化剂的积炭速率,缩短了积炭在载体上达到积炭平衡的时间,促进了活性相表面积炭的形成及积炭石墨化;同时原料中富含丙烯,使不饱和脂肪族化合物的生成量增加,从而促进了芳香性的碳、石墨化的碳的生成,但催化剂结构未遭到破坏。在丙烷脱氢过程中,当丙烯含量增加到1.5%时,出现活性相表面上的积炭“峰I”,而“峰II”向高温区移动。当烯烃含量增加3.0%时,峰I和峰II融合在一起,整个峰的面积明显增加,积炭量超过10.26%时,催化剂积炭石墨化程度越来越高。丙烯含量增加,加速了载体的容碳能力迅速饱和过程,同样的反应时间下,积炭量增加。
  • FIG. 1682.  FIG. 1682.

    FIG. 1682.  FIG. 1682.

    图  1  原料中不同丙烯含量时催化剂的稳定性

    Figure  1  Stability of catalyst under different content of propylene in feedstock conditions

    (Atmospheric, propane volume space velocity 500 h−1 , reaction temperature 610 ℃, H2/C3H8 (mol) = 0.8∶1)

    图  2  原料中不同丙烯含量结焦催化剂的DTG曲线

    Figure  2  Graph of DTG under different content of propylene in feedstock conditions

    图  3  不同丙烯含量结焦催化剂的NH3-TPD谱图

    Figure  3  NH3-TPD profiles of different catalysts of coke decomposition

    图  4  原料中不同丙烯含量积炭催化剂的 FT-IR 谱图

    Figure  4  Spectrum of FT-IR of coke catalyst under different content of propylene in feedstock conditions

    图  5  原料中不同丙烯含量结焦催化剂的 Raman 谱图

    Figure  5  Spectrum of Raman of coke catalyst under different content of propylene in feedstock conditions

    图  6  积炭催化剂Sn的XPS谱图

    Figure  6  XPS spectrum of Sn of coke catalyst under different content of propylene in feedstock conditions (propylene content of 0 (left), propylene content of 3.0%(right))

    图  7  丙烷脱氢催化剂中积炭的形成过程

    Figure  7  Process of coke deposition on catalyst of propane dehydrogenation

    图  8  丙烯的存在对积炭过程的影响

    Figure  8  Influence of the presence of propylene on the carbon deposition process

    表  1  丙烷脱氢入口原料与出口产物组成

    Table  1  Composition of feedstock in inlet and products in outlet

    ProductInlet
    composition/%
    Outlet
    composition/%
    Methane02.04
    Ethane01.76
    Ethylene00.35
    Propane54.9136.51
    Propylene011.63
    Hydrogen45.0847.70
    下载: 导出CSV

    表  2  原料中含有丙烯对催化剂积炭速率的影响

    Table  2  Effect of propylene in feedstock on the rate of coke decomposition of catalyst

    Propylene content/%Reaction time/hCoke amount/%Rate of coke
    decomposition of catalyst/g(C)∙(g(cat)∙h)−1
    0482.580.0005
    0.8483.150.0006
    1.5485.500.0011
    3.04810.260.0021
    下载: 导出CSV

    表  3  原料中不同烯烃含量下积炭催化剂酸量及酸分布

    Table  3  Acid amount and acid distribution of different catalysts of coke decomposition under different content of propylene in feedstock conditions

    Propylene content/%Total acid amount/
    (mmol∙g−1)
    Acid distribution/%
    150−250 ℃250−400 ℃400−500 ℃
    0 0.248 51.21 28.63 20.16
    0.8 0.219 53.88 27.40 18.72
    1.5 0.117 60.68 22.22 17.09
    3.0 0.035 65.71 25.71 8.57
    下载: 导出CSV

    表  4  D峰和G峰积分数据

    Table  4  Integral data of the D Peak and the G Peak

    SampleD PeakG PeakID/IG
    D041423180232.3
    D0.82452121195082.05
    D1.5197065996061.89
    D3.01670721007871.67
    下载: 导出CSV

    表  5  原料中不同烯烃含量下催化剂积炭的元素分析

    Table  5  Analysis of C and H of coke catalyst under different content of propylene in feedstock conditions

    C3H6/%00.81.53
    C2.583.155.510.26
    H0.230.270.240.36
    H/C1.071.020.520.42
    下载: 导出CSV
  • [1] TALLMAN M J, KLAVERS R. North American olefin producers riding the shale gas wave[J]. Hydrocarbon Process,2013,4:37−40.
    [2] SANFILIPPO D, MIRACCA I. Dehydrogenation of paraffins: Synergies between catalyst design and reactor engineering[J]. Catal Today,2006,111:133−139. doi: 10.1016/j.cattod.2005.10.012
    [3] ZHANG X T, HE N, LIU C Y, GUO H C. Pt-Cu alloy nanoparticles encapsulated in silicalite-1 molecular sieve: Coke-resistant catalyst for alkane dehydrogenation[J]. Catal Lett,2019,149:974−984. doi: 10.1007/s10562-019-02671-4
    [4] LU J L, FU B S, KUNG M C, XIAO G M, ELAM J W, KUNG H H, STAIR P C. Coking and sintering resistant palladium catalysts achieved through atomic layer deposition[J]. Science,2012,335(6073):1205−1208. doi: 10.1126/science.1212906
    [5] WEERACHON T, KONGKIAT S, PIYASAN P, JOONGJAI P. Enhanced stability and propene yield in propane dehydrogenation on PtIn/Mg(Al)O catalysts with various in loadings[J]. Top Catal,2018,61:1624−1632. doi: 10.1007/s11244-018-1008-0
    [6] 李庆, 隋志军, 朱贻安, 周兴贵. Pt催化丙烷脱氢过程中结焦反应的粒径效应与Sn的作用[J]. 化工学报,2013,64(2):525−531.

    LI Qing, SUI Zhi-jun, ZHU Yi-an, ZHOU Xing-gui. Formation of coke on Pt catalysts during propane dehydrogenation: effect of Pt particle size and Sn addition[J]. CIESC J(China),2013,64(2):525−531.
    [7] IGLESIAS-JUEZ A, BEALE A M, MAAIJEN K, WENG T C, GLATZEL P, WECKHUYSEN B M. A combined in situ time-resolved UV-Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions[J]. J Catal,2010,276(2):268−279. doi: 10.1016/j.jcat.2010.09.018
    [8] WOLF M, RAMAN N, TACCARDI N, HORN R, HAUMANN M, WASSERSCHEID P. Capturing spatially resolved kinetic data and coking of Ga-Pt supported catalytically active liquid metal solutions during propane dehydrogenation in situ[J]. Faraday Discuss,2021,229:359−377. doi: 10.1039/D0FD00010H
    [9] DAI Y, WU Y, DAI H, GAO X, TIAN S Y, GU J J, YI X F, ZHENG A M, YANG Y H. Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation[J]. J Catal,2021,395:105−116. doi: 10.1016/j.jcat.2020.12.021
    [10] WOLF M, NARAYANAN RAMAN D, TACCARDI N, HAUMANN M, WASSERSCHEID P. Coke formation during propane dehydrogenation over Ga-Rh supported catalytically active liquid metal solutions[J]. ChemCatChem,2020,12(4):1085−1094. doi: 10.1002/cctc.201901922
    [11] YE G, WANG H, DUAN X, SUI Z, ZHOU X, COPPENS M O, YUAN W. Pore network modeling of catalyst deactivation by coking, from single site to particle, during propane dehydrogenation[J]. AIChE J,2019,65(1):140−150. doi: 10.1002/aic.16410
    [12] LARSSON M, HULTÉN M, BLEKKAN E A, ANDERSSON B. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation[J]. J Catal,1996,164(1):44−53. doi: 10.1006/jcat.1996.0361
    [13] 张海娟, 王振宇, 李江红, 乔凯, 张舒冬. 反应条件对丙烷脱氢催化剂积碳行为的影响[J]. 天然气化工,2014,39(2):38−42.

    ZHANG Hai-juan, WANG Zhen-yu, LI Jiang-hong, QIAO Kai, ZHAGN Shu-dong. Effect of reaction conditions on coke formation over the catalyst for propane dehydrogenation[J]. Nat Gas Chem Ind,2014,39(2):38−42.
    [14] IBARRA J V, ROYO C, MONZÓN A, SANTAMARÍA J. Fourier transform infrared spectroscopic study of coke deposits on a Cr2O3-Al2O3 catalyst[J]. Vib Spectrosc,1995,9(2):191−196. doi: 10.1016/0924-2031(95)00005-F
    [15] SATTLER J J H B, BEALE A M, WECKHUYSEN B M. Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt-Sn/Al2O3 propane dehydrogenation catalysts[J]. Phys Chem Chem Phys,2013,15(29):12095−12103. doi: 10.1039/c3cp50646k
    [16] 吴睿, 王海之, 张健, 隋志军, 朱贻安, 周兴贵. Pt系催化剂丙烷脱氢结焦性质比较[J]. 天然气化工-C1化学与化工,2017,42(5):46−51.

    WU Rui, WANG Hai-zhi, ZHANG Jian, SUI Zhi-jun, ZHU Yi-an, ZHOU Xing-gui. Characterization of cokes formed on Pt-based catalyst for propane dehydrogenation[J]. Nat Gas Chem Ind,2017,42(5):46−51.
    [17] LI Q, SUI Z, ZHOU X, ZHU Y, ZHOU J, CHEN D. Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: Coke characterization and kinetic study[J]. Top Catal,2011,54:888−896. doi: 10.1007/s11244-011-9708-8
    [18] UKPONG A M. Ab initio studies of propane dehydrogenation to propene with graphene[J]. Mol Phys,2020,118(24):e1798527. doi: 10.1080/00268976.2020.1798527
    [19] LI Q, YANG G, WANG K, WANG X. Preparation of carbon-doped alumina beads and their application as the supports of Pt-Sn-K catalysts for the dehydrogenation of propane[J]. React Kinet, Mech Catal,2020,129(2):805−817. doi: 10.1007/s11144-020-01753-4
    [20] RUELAS-LEYVA J P, MALDONADO-GARCIA L F, TALAVERA-LOPEZ A, SANTOS-LÓPEZ I A, PICOS-CORRALES L A, SANTOLALLA-VARGAS C E, GOMEZ-TORRES S A, FUENTES G A. A comprehensive study of coke deposits on a Pt-Sn/SBA-16 catalyst during the dehydrogenation of propane[J]. Catalysts,2021,11(1):128. doi: 10.3390/catal11010128
    [21] CHEN S, ZHAO Z J, MU R, CHANG X, LUO J, PURDY S C, KROPF J, SUN G D, PEI C L, MILLER J T, ZHOU X H, VOVK E, YANG Y, GONG J L. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts[J]. Chem,2021,7(2):387−405. doi: 10.1016/j.chempr.2020.10.008
    [22] SRICHAROEN C, JONGSOMJIT B, PANPRANOT J, PRASERTHDAM P. The key to catalytic stability on sol-gel derived SnOx/SiO2 catalyst and the comparative study of side reaction with K-PtSn/Al2O3 toward propane dehydrogenation[J]. Catal Today,2021,375:343−351. doi: 10.1016/j.cattod.2020.05.053
    [23] 徐志康, 黄佳露, 王廷海, 岳源源, 白正帅, 鲍晓军, 朱海波. 丙烷脱氢制丙烯催化剂的研究进展[J]. 化工进展,2021,40(4):1893−1916.

    XU Zhi-kang, HUANG Jia-lu, WANG Ting-hai, YUE Yuan-yuan, BAI Zheng-shuai, BAO Xiao-jun, ZHU Hai-bo. Advances in catalysts for propane dehydrogenation to propylene[J]. Chem Ind Eng Prog,2021,40(4):1893−1916.
    [24] KUMAR M S, CHEN D, WALMSLEY J C, HOLMEN A. Dehydrogenation of propane over Pt-SBA-15: Effect of Pt particle size[J]. Catal Commun,2008,9(5):747−750. doi: 10.1016/j.catcom.2007.08.015
    [25] CAI W, MU R, ZHA S, SUN G, CHEN S, ZHAO Z J, LI H, TIAN H, TANG Y, TAO F, ZENG L, GONG J. Subsurface catalysis-mediated selectivity of dehydrogenation reaction[J]. Sci Adv,2018,4(8):eaar5418. doi: 10.1126/sciadv.aar5418
    [26] XIAO L, MA F, ZHU Y A, SUI Z J, ZHOU J H, ZHOU X G, CHEN D, YUAN W K. Improved selectivity and coke resistance of core-shell alloy catalysts for propane dehydrogenation from first principles and microkinetic analysis[J]. Chem Eng J,2019,377:120049. doi: 10.1016/j.cej.2018.09.210
    [27] NAKAYA Y, HIRAYAMA J, YAMAZOE S, SHIMIZU K I, FURUKAWA S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation[J]. Nat Commun,2020,11(1):1−7. doi: 10.1038/s41467-019-13993-7
    [28] CHEN S, CHANG X, SUN G, ZHANG T, XU Y, WANG Y, PEI C L, GONG J. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies[J]. Chem Soc Rev,2021,50(5):3315−3354. doi: 10.1039/D0CS00814A
    [29] FARJOO A, KHORASHEH F, NIKNADDAF S, SOLTANI M. Kinetic modeling of side reactions in propane dehydrogenation over Pt-Sn/γ - Al2O3 catalyst[J]. Sci Iran,2011,18(3):458−464. doi: 10.1016/j.scient.2011.05.009
    [30] JANG E J, LEE J, JEONG H Y, KWAK J H. Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts[J]. Appl Catal A: Gen,2019,572:1−8.
    [31] VAN Doom J, MOULIJN J A. Extraction of spent hydrotreating catalysts studied by Fourier transform infra-red spectroscopy[J]. Fuel Process Technol,1990,26(1):39−51. doi: 10.1016/0378-3820(90)90022-K
    [32] DUMONT M, CHOLLON G, DOURGES M A, PAILLER R, BOURRAT X, NASLAIN R, BRUNEEL J L, COUZI M. Chemical, microstructural and thermal analyses of a naphthalene-derived mesophase pitch[J]. Carbon,2002,40(9):1475−1486. doi: 10.1016/S0008-6223(01)00320-7
    [33] LI J, NAGA K, OHZAWA Y, NAKAJIMA T, SHAMES A I, PANICH A M. Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery[J]. J Fluorine Chem,2005,126(2):265−273. doi: 10.1016/j.jfluchem.2004.09.034
    [34] KAYLOR N, DAVIS R J. Propane dehydrogenation over supported Pt-Sn nanoparticles[J]. J Catal,2018,367:81−193. doi: 10.1016/j.jcat.2018.08.014
    [35] FAN X, LI J, ZHAO Z, WEI Y, LIU J, DUAN A, JIANG G. Dehydrogenation of propane over PtSnAl/SBA-15 catalysts: Al addition effect and coke formation analysis[J]. Catal Sci Technol,2015,5:339−350. doi: 10.1039/C4CY00951G
    [36] VU B K, SONG M B, AHN I Y, SUH Y W, SUH D J, KIM J S, SHIN E W. Location and structure of coke generated over Pt-Sn/Al2O3 in propane dehydrogenation[J]. J Ind Eng Chem,2011,17:71−76. doi: 10.1016/j.jiec.2010.10.011
    [37] VORONETSKII M S, DIDENKO L P, SAVCHENKO V I. Equilibrium conditions for the minimum coke formation during the dehydrogenation of propane[J]. Russ J Phys Chem B,2009,3(2):216−222. doi: 10.1134/S1990793109020079
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  123
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-01-24
  • 录用日期:  2022-01-26
  • 网络出版日期:  2022-02-16
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回