留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超小纳米Co3O4耦合高含氮碳复合材料的电催化析氧性能研究

李艳 程庆彦 刘栋杰 杨淑慧 胡良艳 谷云含 石华 乔金栋

李艳, 程庆彦, 刘栋杰, 杨淑慧, 胡良艳, 谷云含, 石华, 乔金栋. 超小纳米Co3O4耦合高含氮碳复合材料的电催化析氧性能研究[J]. 燃料化学学报(中英文), 2022, 50(7): 904-911. doi: 10.1016/S1872-5813(22)60003-3
引用本文: 李艳, 程庆彦, 刘栋杰, 杨淑慧, 胡良艳, 谷云含, 石华, 乔金栋. 超小纳米Co3O4耦合高含氮碳复合材料的电催化析氧性能研究[J]. 燃料化学学报(中英文), 2022, 50(7): 904-911. doi: 10.1016/S1872-5813(22)60003-3
LI Yan, CHENG Qing-yan, LIU Dong-jie, YANG Shu-hui, HU Liang-yan, GU Yun-han, SHI Hua, QIAO Jin-dong. Electrocatalytic oxygen evolution of ultrafine nano-Co3O4 coupled with N-rich carbon composites[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 904-911. doi: 10.1016/S1872-5813(22)60003-3
Citation: LI Yan, CHENG Qing-yan, LIU Dong-jie, YANG Shu-hui, HU Liang-yan, GU Yun-han, SHI Hua, QIAO Jin-dong. Electrocatalytic oxygen evolution of ultrafine nano-Co3O4 coupled with N-rich carbon composites[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 904-911. doi: 10.1016/S1872-5813(22)60003-3

超小纳米Co3O4耦合高含氮碳复合材料的电催化析氧性能研究

doi: 10.1016/S1872-5813(22)60003-3
基金项目: 河北省自然科学基金(B2018202293)资助
详细信息
    通讯作者:

    Tel: 13821909658,E-mail: chengqingyan@hebut.edu.cn

    shihua@cntcc.cn

  • 中图分类号: TQ151.1

Electrocatalytic oxygen evolution of ultrafine nano-Co3O4 coupled with N-rich carbon composites

Funds: The project was supported by Natural Science Foundation of Hebei Province (B2018202293).
  • 摘要: 过渡金属氧化物是一种具有高效催化活性的电解水析氧反应催化剂,但低电子电导率限制了其催化活性,将活性纳米材料与导电基质材料复合,是构筑高性能电极材料或电化学催化剂的有效途径。采用溶剂热法制备了负载在C3N4上的聚合卟啉,经Co元素修饰和热处理后得到Co3O4/NC催化剂,采用XRD、SEM、TEM、XPS和FT-IR等方法对催化剂的物理化学性质进行表征。结果表明,Co3O4/NC-600具有超小纳米Co3O4结构,且其含氮量高,吡啶N与Co之间产生了协同作用,催化剂在OER反应中表现出良好的催化性能,其Tafel斜率仅为66.4 mV/dec,达到10 mA/cm2的电流密度所需的过电势为343.3 mV。
  • FIG. 1689.  FIG. 1689.

    FIG. 1689.  FIG. 1689.

    图  1  Co3O4/NC-t及其前驱体的FT-IR谱图

    Figure  1  FT-IR spectra of Co3O4/NC-T and its precursors

    图  2  (a) Co3O4/NC-600的SEM照片;((b)−(e)) BDA-PY-Co/C3N4、Co3O4/NC-500、Co3O4/NC-600和Co3O4/NC-800的TEM照片;(f) Co3O4/NC-600的HRTEM照片

    Figure  2  (a) SEM image of Co3O4/NC-600; ((b)−(e)) TEM images of BDA-PY-Co/C3N4, Co3O4/NC-500, Co3O4/NC-600 and Co3O4/NC-800; (f) HRTEM image of Co3O4/NC-600

    图  3  Co3O4/NC-t及其前驱体的XRD谱图

    Figure  3  XRD patterns of Co3O4/NC-T and its precursors

    图  4  XPS谱图 (a) BDA-PY-Co/C3N4与Co3O4/NC-600的N 1s谱图;(b) BDA-PY-Co/C3N4、Co3O4/NC-600和Co3O4/NC-800的Co 2p谱图

    Figure  4  XPS spectra of (a) N 1s spectra of BDA-PY-Co/C3N4 and Co3O4/NC-600; (b) Co 2p spectra of BDA-PY-Co/C3N4, Co3O4/NC-600 and Co3O4/NC-800

    图  5  Co3O4/NC-t及其前驱体的OER性能

    Figure  5  (a) Polarization curves and (b) Tafel slopes of Co3O4/NC-t and its precursors

    图  6  (a) Co3O4/NC-t及其前驱体的电化学阻抗谱和等效电路图;(b) Co3O4/NC-600的循环伏安曲线;(c) Co3O4/NC-t及其前驱体在不同扫速下的双电层电容

    Figure  6  (a) EIS and equivalent circuit diagram of Co3O4/NC-t and its precursors; (b) CVs of Co3O4/NC-600; (c) Double layer capacitance of Co3O4/NC-t and its precursors at different scan rates

    图  7  (a) Co3O4/NC-600在10 mA/cm2下的恒电流曲线;((b)−(c)) 进行稳定性测试后的Co3O4/NC-600及其局部放大的SEM照片

    Figure  7  (a) Constant current curve of Co3O4/NC-600 at 10 mA/cm2; (b-c) SEM images of Co3O4/NC-600 after the stability measurement

  • [1] LI L G, WANG P T, SHAO Q, HUANG X Q. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chem Soc Rev,2020,49(10):3072−3106. doi: 10.1039/D0CS00013B
    [2] OENER S Z, FOSTER M J, BOETTCHER S W. Accelerating water dissociation in bipolar membranes and for electrocatalysis[J]. Science,2020,369(6507):1099−1103. doi: 10.1126/science.aaz1487
    [3] ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem Soc Rev,2015,44(15):5148−5180. doi: 10.1039/C4CS00448E
    [4] LI X, ZHAO L L, YU J Y, LIU X Y, ZHANG X L, LIU H, ZHOU W J. Water splitting: from electrode to green energy system[J]. Nano-Micro Lett,2020,12(1):131. doi: 10.1007/s40820-020-00469-3
    [5] LING T, ZHANG T, GE B H, HAN L L, ZHENG L R, LUN F, XU Z R, HU W B, DU X W, DAVEY K, QIAO S Z. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction[J]. Adv Mater,2019,31(16):e1807771. doi: 10.1002/adma.201807771
    [6] ZHANG H, YANG X H, ZHANG H J, MA J L, HUANG Z Y, LI J, WANG Y. Recent advances in transition-metal carbides as HER electrocatalysts: Synthetic methods and optimization strategies[J]. Chem,2021,27(16):5074−5090. doi: 10.1002/chem.202003979
    [7] LI Y, LI H X, CAO K Z, JIN T, WANG X J, SUN H M, NING J X, WANG Y J, JIAO L F. Electrospun three dimensional Co/CoP@nitrogen-doped carbon nanofibers network for efficient hydrogen evolution[J]. Energy Stor Mater,2018,12:44−53. doi: 10.1016/j.ensm.2017.11.006
    [8] WANG J, XU F, JIN H Y, CHEN Y Q, WANG Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications[J]. Adv Mater,2017,29(14):1605838. doi: 10.1002/adma.201605838
    [9] LIU J H, LIU X W. Two-dimensional nanoarchitectures for lithium storage[J]. Adv Mater,2012,24(30):4097−4111. doi: 10.1002/adma.201104993
    [10] YU M Z, ZHOU S, WANG Z Y, ZHAO J J, QIU J S. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy,2018,44:181−190. doi: 10.1016/j.nanoen.2017.12.003
    [11] XIE L S, ZHANG X P, ZHAO B, LI P, QI J, GUO X A, WANG B, LEI H T, ZHANG W, APFEL U, CAO R. Enzyme-inspired iron porphyrins for improved electrocatalytic oxygen reduction and evolution reactions[J]. Angew Chem Int Ed Eng,2021,60(14):7576−7581. doi: 10.1002/anie.202015478
    [12] ZHANG X P, CHANDRA A, LEE Y M, CAO R, RAY K, NAM W. Transition metal-mediated O-O bond formation and activation in chemistry and biology[J]. Chem Soc Rev,2021,50(8):4804−4811. doi: 10.1039/D0CS01456G
    [13] LV B, LI X L, GUO K, MA J, WANG Y Z, LEI H T, WANG F, JIN X T, ZHANG Q X, ZHANG W, LONG R, XIONG Y J, APFEL U, CAO R. Controlling oxygen reduction selectivity through steric effects: Electrocatalytic two-electron and four-electron oxygen reduction with cobalt porphyrin atropisomers[J]. Angew Chem Int Ed Eng,2021,60(23):12742−12746. doi: 10.1002/anie.202102523
    [14] ZHANG B X, ZHANG J L, SHI J B, TAN D X, LIU L F, ZHANG F Y, LU C, SU Z Z, TAN X N, CHENG X Y, HAN B X, ZHENG L R, ZHANG J. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction[J]. Nat Commun,2019,10(1):1−8. doi: 10.1038/s41467-018-07882-8
    [15] ZHU J, HU L S, ZHAO P X, LEE L Y S, WONG K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem Rev,2020,120(2):851−918. doi: 10.1021/acs.chemrev.9b00248
    [16] HAN H, PAIK J W, HAM M, KIM K M, PARK J K, JEONG Y K. Atomic layer deposition-assisted fabrication of Co-nanoparticle/N-doped carbon nanotube hybrids as efficient electrocatalysts for the oxygen evolution reaction[J]. Small,2020,16(33):e2002427. doi: 10.1002/smll.202002427
    [17] WANG H, SHAO Y, MEI S L, LU Y, ZHANG M, SUN J, MATYJASZEWSKI K, ANTONIETTI M, YUAN J Y. Polymer-derived heteroatom-doped porous carbon materials[J]. Chem Rev,2020,120(17):9363−9419. doi: 10.1021/acs.chemrev.0c00080
    [18] ZANG W J, SUN T, YANG T, XI S B, WAQAR M, KOU Z K, LYU Z, FENG Y P, WANG J, PENNYCOOK S J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis[J]. Adv Mater,2021,33(8):e2003846. doi: 10.1002/adma.202003846
    [19] YANG C H, YANG Z D, DONG H, SUN N, LU Y, ZHANG F M, ZHANG G L. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER[J]. ACS Energy Lett,2019,4(9):2251−2258. doi: 10.1021/acsenergylett.9b01691
    [20] ZHANG X, ZHU Y, BRUCK A M, HOUSEL L M, WANG L, QUILTY C D, TAKEUCHI K J, TAKEUCHI E S, MARSCHILOK A C, YU G H. Understanding aggregation hindered Li-ion transport in transition metal oxide at mesoscale[J]. Energy Stor Mater,2019,19:439−445. doi: 10.1016/j.ensm.2019.03.017
    [21] LU M, LIU J, LI Q, ZHANG M, LIU M, WANG J L, YUAN D Q, LAN Y Q. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O[J]. Angew Chem Int Ed Eng,2019,58(36):12392−12397. doi: 10.1002/anie.201906890
    [22] 吴文倩, 邓德明. 铁掺杂氮化碳的制备及其可见光催化性能[J]. 武汉大学学报(理学版),2017,63(3):227−233.

    WU Wen-qian, DENG De-ming. Fabrication of Fe-doped carbon nitride with enhanced visible light photocatalytic performance[J]. J Wuhan Univ (Nat Sci Ed),2017,63(3):227−233.
    [23] AN S F, ZHANG G H, LIU J Q, LI K Y, WAN G, LIANG Y, JI D H, MILLER J T, SONG C S, LIU W, LIU Z M, GUO X W. A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites[J]. Chin J Catal,2020,41(8):1198−1207. doi: 10.1016/S1872-2067(20)63529-X
    [24] 石明亮. Co3O4/g-C3N4/Pt复合材料的制备及其光催化制氧研究[D]. 太原: 中北大学, 2019.

    SHI Ming-liang. Preparation and photocatalytic oxygen production of Co3O4/g-C3N4/Pt composites[D]. Taiyuan: North University of China, 2019.
    [25] LIU X S, XU H M, WANG L L, QU Z, YAN N Q. Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry[J]. Chem Eng J,2020,381:122559. doi: 10.1016/j.cej.2019.122559
    [26] LI P Y, LIU L, AN W J, WANG H, GUO H X, LIANG Y H, CUI W Q. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO to ethanol[J]. Appl Catal B: Environ,2020,266:118618. doi: 10.1016/j.apcatb.2020.118618
    [27] HE D, SONG X Y, LI W Q, TANG C Y, LIU J C. Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance[J]. Angew Chem Int Ed Eng,2020,59(17):6929−6935. doi: 10.1002/anie.202001681
    [28] WANG X R, LIU J Y, LIU Z W, WANG W C, LUO J, HAN X P, DU X W, QIAO S Z, YANG J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER[J]. Adv Mater,2018,30(23):1800005. doi: 10.1002/adma.201800005
    [29] 宋卓卓, 余宗宝, 武宏大, 肖伟, 耿忠兴, 任铁强, 史春薇, 杨占旭. CoSOH/Co(OH)2 复合纳米片的制备及其氧析出催化性能[J]. 燃料化学学报,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4

    SONG Zhuo-zhuo, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, SHI Chun-wei, YANG Zhan-xu. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. J Fuel Chem Technol,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4
    [30] CHEN J S, LI H, CHEN S M, FEI J Y, LIU C, YU Z X, SHIN K, LIU Z W, SONG L, HENKELMAN G, WEI L, CHEN Y. Co-Fe-Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts[J]. Adv Energy Mater,2021,11(11):2003412. doi: 10.1002/aenm.202003412
    [31] WU P W, WU J, SI H N, ZHANG Z, LIAO Q L, WANG X, DAI F L, AMMARAH K, KANG Z, ZHANG Y. 3D holey-graphene architecture expedites ion transport kinetics to push the OER performance[J]. Adv Energy Mater,2020,10(22):2001005. doi: 10.1002/aenm.202001005
    [32] WAN C Z, DUAN X F, HUANG Y. Molecular design of single-atom catalysts for oxygen reduction reaction[J]. Adv Energy Mater,2020,10(14):1903815. doi: 10.1002/aenm.201903815
  • 加载中
图(8)
计量
  • 文章访问数:  2616
  • HTML全文浏览量:  130
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-02-13
  • 录用日期:  2022-02-25
  • 网络出版日期:  2022-03-07
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回