留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布活化能模型法的农林生物质热解动力学对比研究

乔沛 郭子千 张玉明 李家州 张炜 刘明华

乔沛, 郭子千, 张玉明, 李家州, 张炜, 刘明华. 基于分布活化能模型法的农林生物质热解动力学对比研究[J]. 燃料化学学报(中英文), 2022, 50(7): 808-823. doi: 10.1016/S1872-5813(22)60009-4
引用本文: 乔沛, 郭子千, 张玉明, 李家州, 张炜, 刘明华. 基于分布活化能模型法的农林生物质热解动力学对比研究[J]. 燃料化学学报(中英文), 2022, 50(7): 808-823. doi: 10.1016/S1872-5813(22)60009-4
QIAO Pei, GUO Zi-qian, ZHANG Yu-ming, LI Jia-zhou, ZHANG Wei, LIU Ming-hua. Comparative study on pyrolysis kinetics of agroforestry biomass based on distributed activation energy model method[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 808-823. doi: 10.1016/S1872-5813(22)60009-4
Citation: QIAO Pei, GUO Zi-qian, ZHANG Yu-ming, LI Jia-zhou, ZHANG Wei, LIU Ming-hua. Comparative study on pyrolysis kinetics of agroforestry biomass based on distributed activation energy model method[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 808-823. doi: 10.1016/S1872-5813(22)60009-4

基于分布活化能模型法的农林生物质热解动力学对比研究

doi: 10.1016/S1872-5813(22)60009-4
基金项目: 国家重点研发计划(2018YFE0183600),国家自然科学基金(U1862107)和中国石油大学(北京)科研基金(2462020YXZZ043,2462021QNXZ007)资助
详细信息
    通讯作者:

    E-mail: ymzhang@cup.edu.cn

    mhliu2000@fzu.edu.cn

  • 中图分类号: TK6

Comparative study on pyrolysis kinetics of agroforestry biomass based on distributed activation energy model method

Funds: The project was supported by the National Key R&D Program of China (2018YFE0183600), National Natural Science Foundation (U1862107) and Science Foundation of China University of Petroleum, Beijing (2462020YXZZ043, 2462021QNXZ007).
  • 摘要: 采用热重质谱(TG-MS)联用技术,考察杏壳、小麦秸秆与杨树木屑等典型农林生物质的热解行为及动力学。结果表明,组分差异使得三种生物质在主要反应区间内(200–450 ℃)表现出不同的特征。采用等转化率法计算发现,杏壳平均活化能为188.22 kJ/mol,秸秆平均活化能为220.77 kJ/mol,木屑平均活化能为175.87 kJ/mol。利用分布活化能模型(DAEM)法计算生物质中各组分的平均活化能,发现三种生物质中存在平均活化能较高的第四组分(杏壳297.44 kJ/mol、秸秆284.35 kJ/mol和木屑309.96 kJ/mol),而半纤维素与纤维素呈现“秸秆<杏壳<木屑”规律。各类动力学计算方法能够互为补充,等转化率方法的整体计算结果与单组分分布活化能模型法结果接近,方法更简便,而分布活化能模型法可以求得原料不同组分的动力学参数,弥补等转化率法的不足,综合使用可以形成对热解反应更为全面的认识。
  • FIG. 1679.  FIG. 1679.

    FIG. 1679.  FIG. 1679.

    图  1  10 ℃/min下样品质量归一化后的DTG曲线

    Figure  1  DTG curves after sample mass normalization at 10 ℃/min

    图  2  生物质在不同升温速率下的TG和 DTG曲线

    Figure  2  TG and DTG curves of biomass at different heating rates

    图  3  热解反应过程中气体产物释放曲线

    Figure  3  Gas products release curves during pyrolysis reaction (a): AS; (b): WS; (c): PS

    图  4  不同升温速率下转化率与温度的关系

    Figure  4  Relationship between the conversion rate and temperature at different heating rates

    (a): AS; (b): WS; (c): PS

    图  5  Friedman法拟合曲线

    Figure  5  Fitting curves with Friedman method

    (a): AS; (b): WS; (c): PS

    图  6  FWO法拟合曲线

    Figure  6  Fitting curves with FWO method

    (a): AS; (b): WS; (c): PS

    图  7  不同方法求得的活化能随转化率的变化

    Figure  7  Curves of activation energy versus conversion rate with different methods

    (a): AS; (b): WS; (c): PS

    图  8  10 ℃/min下四组分DAEM法拟合曲线

    Figure  8  Fitting curves with four-component DAEM method at 10 ℃/min

    (a): AS; (b): WS; (c): PS

    表  1  生物质的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of biomass

    SampleProximate analysis wad/%Ultimate analysis wdaf/%
    AVFCCHSNOa
    AS3.8381.9814.1946.395.990.240.2440.05
    WS5.7674.7819.4640.305.940.240.9947.03
    PS1.5079.7118.7946.106.630.140.2344.01
    ad: air-dried basis, daf: dry ash-free basis, a: by difference
    下载: 导出CSV

    表  2  生物质的组分分析

    Table  2  Component analysis of biomass

    SampleContent w/%
    cellulosehemicelluloseligninashextractives
    AS21.8223.3443.863.839.06
    WS53.8416.3814.765.769.26
    PS31.8134.9325.251.506.51
    下载: 导出CSV

    表  3  不同升温速率下的热解特征参数

    Table  3  Pyrolysis characteristic parameters at different heating rates

    Sampleβ/(℃·min−1)ts/℃tmax/℃tf /℃(dα/dt)max/(%·s−1)Δαmax/%Δα/%
    Apricot
    shell
    10 181 364 403 0.13 80.17 81.36
    20 192 365 412 0.24 81.92 84.46
    30 199 371 421 0.36 74.05 86.53
    40 197 379 425 0.49 80.62 85.77
    Wheat
    straw
    10 175 331 377 0.18 76.35 78.01
    20 182 342 394 0.34 71.53 80.84
    30 179 348 403 0.47 68.02 81.80
    40 174 354 424 0.54 73.78 84.38
    Poplar
    sawdust
    10 186 358 399 0.16 80.43 84.03
    20 192 372 415 0.29 78.01 85.34
    30 197 380 419 0.43 77.26 85.37
    40 202 387 429 0.56 76.04 85.96
    下载: 导出CSV

    表  4  Friedman法和FWO法求得的动力学参数

    Table  4  The kinetic parameters obtained by Friedman method and FWO method

    αFriedman methodFWO method
    E/(kJ·mol−1)A/s−1R2E/(kJ·mol−1)A/s−1R2
    Apricot shell
    0.1 152.85 2.75×1013 0.9979 144.98 6.35×1012 0.9713
    0.15 166.56 3.94×1014 0.9992 153.63 3.67×1013 0.9914
    0.2 177.00 2.53×1015 0.9978 160.85 1.46×1014 0.9987
    0.25 188.49 1.85×1016 0.9928 169.69 7.73×1014 0.9999
    0.3 203.52 2.59×1017 0.9899 181.65 7.33×1015 0.9979
    0.35 204.18 1.79×1017 0.9818 188.06 1.91×1016 0.9697
    0.4 201.10 5.83×1016 0.9947 196.62 8.08×1016 0.9918
    0.45 180.80 7.07×1014 0.9982 193.82 3.10×1016 0.9963
    0.5 172.14 1.02×1014 0.9993 187.13 5.76×1015 0.9991
    0.55 174.97 1.49×1014 0.9960 183.34 2.07×1015 0.9994
    0.6 176.94 1.91×1014 0.9882 181.24 1.09×1015 0.9987
    0.65 180.57 3.26×1014 0.9815 180.84 8.32×1014 0.9963
    0.7 196.34 4.92×1015 0.9798 182.75 9.86×1014 0.9930
    0.75 259.69 3.80×1020 0.9709 195.23 8.22×1015 0.9875
    0.8 646.36 2.96×1050 0.3070 358.29 8.45×1028 0.5567
    Average 188.22 178.56
    Wheat straw
    0.1 121.13 3.19×1010 0.9925 102.42 8.47×108 0.9866
    0.15 178.65 7.36×1015 0.9837 126.91 1.62×1011 0.9999
    0.2 201.52 6.17×1017 0.9596 156.18 7.84×1014 0.9923
    0.25 201.10 3.37×1017 0.9266 172.40 1.93×1015 0.9746
    0.3 201.33 2.42×1017 0.9765 183.54 1.52×1016 0.9586
    0.35 201.82 2.04×1017 0.9951 190.98 5.44×1016 0.9773
    0.4 203.69 2.42×1017 0.9955 195.65 1.13×1017 0.9867
    0.45 194.62 3.12×1016 0.9939 197.61 1.37×1017 0.9900
    0.5 187.48 5.8×1015 0.9939 198.07 1.21×1017 0.9930
    0.55 181.83 1.32×1015 0.9860 193.24 3.56×1016 0.9872
    0.6 201.27 3.23×1016 0.9901 190.53 1.53×1016 0.9968
    0.65 384.07 1.36×1031 0.9866 251.47 1.35×1021 0.9911
    0.7 411.53 5.28×1031 0.8966 447.10 2.97×1036 0.9120
    0.75 488.08 4.29E+35 −0.09308 482.96 1.47×1037 -0.04978
    Average 220.77 200.51
    Poplar sawdust
    0.1 163.97 2.18×1014 0.9882 170.75 2.3×1015 0.9906
    0.15 168.21 3.25×1014 0.9943 168.34 7.61×1014 0.9934
    0.2 168.59 2.24×1014 0.9941 168.69 5.41×1014 0.9938
    0.25 175.04 5.53×1014 0.9951 170.70 5.74×1014 0.9951
    0.3 179.25 8.66×1014 0.9949 174.15 8.31×1014 0.9947
    0.35 180.89 8.44×1014 0.9957 176.67 1.00×1015 0.9949
    0.4 183.09 9.88×1014 0.9959 179.23 1.25×1015 0.9954
    0.45 176.91 2.47×1014 0.9944 179.72 1.06×1015 0.9956
    0.5 173.22 1.08×1014 0.9943 178.48 6.78×1014 0.9960
    0.55 169.85 5.25×1013 0.9934 177.12 4.40×1014 0.9953
    0.6 167.21 2.95×1013 0.9951 175.81 2.97×1014 0.9958
    0.65 164.75 1.68×1013 0.9943 173.81 1.79×1014 0.9954
    0.7 164.43 1.37×1013 0.9881 172.94 1.34×1014 0.9942
    0.75 174.05 6.26×1013 0.9729 173.12 1.20×1014 0.9922
    0.8 228.57 7.02×1017 0.8935 180.76 3.92×1014 0.9797
    Average 175.87 174.69
    下载: 导出CSV

    表  5  四组分DAEM动力学参数及评价指标

    Table  5  Kinetic parameters and evaluation indexes from four-component DAEM method

    Biomassβ/(℃·min−1)ComponentciAi/s−1E/(kJ·mol−1)Fit /%R2

    Apricot shell

    10
    CNT10.28153.14×10263.163.06320.9925
    CNT20.37559.41×109131.121.78240.9965
    CNT30.29061.04×1019248.231.47990.9975
    CNT40.05242.72×1023297.446.41100.9189

    Wheat straw

    10
    CNT10.36989.60×10268.431.66790.9974
    CNT20.40284.93×109128.660.48710.9998
    CNT30.12761.08×1019237.474.93660.9423
    CNT40.09981.85×1023284.351.36900.9971
    Poplar sawdust
    10
    CNT10.19171.02×10244.603.70800.9880
    CNT20.54069.53×109137.390.39990.9998
    CNT30.17002.72×1019256.093.30920.9859
    CNT40.09779.99×1023309.965.78270.9521
    下载: 导出CSV

    表  6  虚拟组分热解特征参数

    Table  6  Pyrolysis characteristic parameters of pseudo-components

    Biomassβ/(℃·min−1)Componentts/℃tmax/℃tf/℃(dw/dt)max/(mg·s−1)

    Apricot shell

    10
    CNT1 361 0.0010
    CNT2 198 299 373 0.0058
    CNT3 276 344 402 0.0063
    CNT4 299 354 382 0.0018

    Wheat straw

    10
    CNT1 366 0.0013
    CNT2 183 290 402 0.0044
    CNT3 273 321 342 0.0039
    CNT4 275 320 356 0.0028

    Poplar sawdust

    10
    CNT1 324 0.0005
    CNT2 195 319 431 0.0055
    CNT3 286 357 396 0.0049
    CNT4 301 360 380 0.0035
    下载: 导出CSV

    表  7  本研究中的活化能与文献中结果的对比

    Table  7  Activation energy comparison between this study and the results in literature

    References Method Sample ES/(kJ·mol−1) EM/(kJ·mol−1)
    This study Friedman Apricot shell Friedman: DAEM:
    AS: 185.20 AS: E1=63.16, E2=131.12, E3=248.23, E4=297.44
    WS: E1=68.43, E2=128.66, E3=237.47, E4=284.35
    PS: E1=44.60, E2=137.39, E3=256.09, E4=309.96
    (AS) WS: 194.19
    FWO Wheat straw PS: 170.47
    (WS) FWO:
    DAEM Poplar sawdust AS:182.07
    (PS) WS:189.83
    PS:176.02
    Singh et al.[30] KAS Acacia nilotica KAS: 211.49 None
    FWO FWO: 221.58
    Friedman Friedman: 216.78
    Starink Starink:211.89
    Mishra et al.[31] KAS Dahlia flower KAS: 220.12 None
    FWO FWO: 220.81
    Friedman Friedman: 222.57
    sDAEM sDAEM:232.78
    Tibola et al.[46] KAS Coffee husk KAS: 162.71 IPRM:
    Friedman Friedman:166.12 E1=44.2, E2=95.7, E3=111.9,
    sDAEM sDAEM:232.78 E4=152.3, E5=174.9, E6=210.2
    IPRM
    Cai et al.[9,24] Friedman Corn stalk
    Rice straw
    Sawdust
    Friedman:Corn
    stalk:148-473
    1st-order DAEM:
    Rice:118-208,
    Sawdust:162-202
    None
    1st-order DAEM
    Vamvuka et al.[45] Model fitting None cellulose: 30–39
    hemicellulose: 90–125
    lignin: 145–285
    Soria et al.[47]
    Guo et al.[48]
    Double-DAEM microalgae Friedman, KAS, double-DAEM:
    Friedman FWO, sDAEM: E1=179.2, E2=259.1
    KAS CV: 135.6–337.1
    FWO NG: 137.4–373.0
    sDAEM NL: 123.2–295.6
    下载: 导出CSV
  • [1] YU J, GUO Q, GONG Y, DING L, WANG J, YU G. A review of the effects of alkali and alkaline earth metal species on biomass gasification[J]. Fuel Process Technol,2021,214:106723. doi: 10.1016/j.fuproc.2021.106723
    [2] BRITISH PETROLEUM. Statistical Review of World Energy[M]. UK: Pureprint Group, 2021.
    [3] 付朋霞, 孟亚洁. 我国实现"双碳"目标面临的机遇与挑战[J]. 通信世界,2021,16:22−23. doi: 10.3969/j.issn.1009-1564.2021.07.010

    FU Peng-xia, MENG Ya-jie. Opportunities and challenges faced by China to achieve the goal of “Double Carbon”[J]. Communi World,2021,16:22−23. doi: 10.3969/j.issn.1009-1564.2021.07.010
    [4] SOLARTE-TORO J C, GONZÁLEZ-AGUIRRE J A, GIRALDO J A P, ALZATE C A C. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading[J]. Renewable Sustainable Energy Rev,2021,136:110376. doi: 10.1016/j.rser.2020.110376
    [5] MENG X, GE H, YE Q, PENG L, WANG Z, JIANG L. Efficient and response surface optimized aqueous enzymatic extraction of Camellia oleifera (tea seed) oil facilitated by concurrent calcium chloride addition[J]. J Am Oil Chem Soc,2018,95(1):29−37. doi: 10.1002/aocs.12009
    [6] SRAMALA I, PINKET W, PONGWAN P, JARUSSOPHON S, KASEMWONG K. Development of an in vitro system to simulate the adsorption of self-emulsifying tea (Camellia oleifera) seed oil[J]. Molecules,2016,21(5):479. doi: 10.3390/molecules21050479
    [7] YAO Z, YOU S, GE T, WANG C. Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation[J]. Appl Energ,2018,209:43−55. doi: 10.1016/j.apenergy.2017.10.077
    [8] LI D, JIANG H. The thermochemical conversion of non-lignocellulosic biomass to form biochar: A review on characterizations and mechanism elucidation[J]. Bioresour Technol,2017,246:57−68. doi: 10.1016/j.biortech.2017.07.029
    [9] CAI J, XU D, DONG Z, YU X, WANG Y, BANKS S W, BRIGEWATER A V. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk[J]. Renewable Sustainable Energy Rev,2018,82:2705−2715. doi: 10.1016/j.rser.2017.09.113
    [10] LUO L, LIU J, ZHANG H, MA J, WANG X, JIANG X. TG-MS-FTIR study on pyrolysis behavior of superfine pulverized coal[J]. J Anal Appl Pyrolysis,2017,128:64−74. doi: 10.1016/j.jaap.2017.10.024
    [11] HUANG J, LIN J, CHEN J, XIE W, KUO J, LU X, CHANG K, WEN S, SUN G, CAI H, BUYUKADA M, EVRENDILEK F. Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: thermal conversion, kinetic, thermodynamic and emission analyses[J]. Bioresour Technol,2018,266:389−397. doi: 10.1016/j.biortech.2018.06.106
    [12] WANG S, DAI G, YANG H, LUO Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energy Combust Sci,2017,62:33−86.
    [13] EL-SAYED S A, MOSTAFA M E. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG)[J]. Energy Convers Manage,2014,85:165−172. doi: 10.1016/j.enconman.2014.05.068
    [14] SANCHEZ-SILVA L, LÓPEZ-GONZÁLEZ D, VILLASEÑOR J, SANCHEZ P, VALVERDE J L. Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis[J]. Bioresour Technol,2012,109:163−172. doi: 10.1016/j.biortech.2012.01.001
    [15] JANKOVIĆ B, MANIĆ N, STOJILJKOVIĆ D, JANKOVIĆ V. TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches[J]. Fuel,2018,234:447−463. doi: 10.1016/j.fuel.2018.07.051
    [16] ROQUE-DIAZ P, VILLAS L, SHEMET C V Z, LAVRENKE V A, KHRISTICH V A. Studies on thermal decomposition and combustion mechanism of bagasse under non-isothermal conditions[J]. Thermochim Acta,1985,93:349−352. doi: 10.1016/0040-6031(85)85088-7
    [17] BIAGINI E, BARONTINI F, TOGNOTTI L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique[J]. Ind Eng Chem Res,2006,45(13):4486−4493. doi: 10.1021/ie0514049
    [18] MÉSZÁROS E, JAKAB E, VÁRHEGYI G. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia[J]. J Anal Appl Pyrolysis,2007,79(1/2):61−70. doi: 10.1016/j.jaap.2006.12.007
    [19] VYAZOVKIN S, WIGHT C A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochim Acta,1999,340:53−68.
    [20] BURNHAM A K, DINH L N. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions[J]. J Therm Anal Calorim,2007,89(2):479−490. doi: 10.1007/s10973-006-8486-1
    [21] LAH B, KLINAR D, LIKOZAR B. Pyrolysis of natural, butadiene, styrene-butadiene rubber and tyre components: Modelling kinetics and transport phenomena at different heating rates and formulations[J]. Chem Eng Sci,2013,87:1−13. doi: 10.1016/j.ces.2012.10.003
    [22] ABOULKAS A, EL HARFI K, EL BOUADILI A. Non-isothermal kinetic studies on co-processing of olive residue and polypropylene[J]. Energ Convers Manage,2008,49(12):3666−3671. doi: 10.1016/j.enconman.2008.06.029
    [23] FREIDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[C]//Journal of polymer science part C: polymer symposia. New York: Wiley Subscription Services, Inc. , A Wiley Company, 1964, 6(1): 183-195.
    [24] CAI J, WU W, LIU R. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[J]. Renewable Sustainable Energy Rev,2014,36:236−246. doi: 10.1016/j.rser.2014.04.052
    [25] SORIA-VERDUGO A, MORGANO M T, MATZING H, GOOS E, LEIBOLD H, MERZ D, RIEDEL U, STAPF D. Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods[J]. Energy Convers Manage,2020,212:112818. doi: 10.1016/j.enconman.2020.112818
    [26] VYAZOVKIN S, BURNHAM A K, FAVERGEON L, KOGA N, MOUKHINA E, PEREZ-MAQUEDA L A, SBIRRAZZUOLI N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics[J]. Thermochim Acta,2020,689:178597. doi: 10.1016/j.tca.2020.178597
    [27] YACOB T W, FISHER R, LINDEN K G, WEIMER A W. Pyrolysis of human feces: Gas yield analysis and kinetic modeling[J]. Waste Manage,2018,79:214−222. doi: 10.1016/j.wasman.2018.07.020
    [28] WINTOKO J, PURWONO S, FAHRURRIZI M, SOEHENDRO B. Kinetic analysis for the drying and devolatilization stages of concentrated black liquor[C]//AIP Conference Proceedings. AIP Publishing LLC, 2019, 2085(1): 020066.
    [29] VÁRHEGYI G, CHEN H, GOGOY S. Thermal decomposition of wheat, oat, barley, and Brassica carinata straws. A kinetic study[J]. Energy Fuels,2009,23(2):646−652. doi: 10.1021/ef800868k
    [30] SINGH S, CHAKRABORTY J P, MONDAL M K. Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods[J]. Fuel,2020,259:116263. doi: 10.1016/j.fuel.2019.116263
    [31] MISHRA R K, MOHANTY K, WANG X. Pyrolysis kinetic behavior and Py-GC-MS analysis of waste dahlia flowers into renewable fuel and value-added chemicals[J]. Fuel,2020,260:116338. doi: 10.1016/j.fuel.2019.116338
    [32] XAVIER T P, LIRA T S, SCHETTINO M A, BARROZO M A S. A study of pyrolysis of macadamia nut shell: Parametric sensitivity analysis of the IPR model[J]. Braz J Chem Eng,2016,33:115−122. doi: 10.1590/0104-6632.20160331s00003629
    [33] 李华, 孔新刚, 王俊. 秸秆饲料中纤维素、半纤维素和木质素的定量分析研究[J]. 新疆农业大学学报,2007,30(3):65−68. doi: 10.3969/j.issn.1007-8614.2007.03.015

    LI Hua, KONG Xin-gang, WANG Jun. Quantitative analysis of cellulose, hemicellulose and lignin in straw feed[J]. Xinjiang Agric Univ,2007,30(3):65−68. doi: 10.3969/j.issn.1007-8614.2007.03.015
    [34] HEAL G R. Evaluation of the integral of the Arrhenius function by a series of Chebyshev polynomials—use in the analysis of non-isothermal kinetics[J]. Thermochim Acta,1999,340:69−76.
    [35] 宋春财, 胡浩权, 朱盛维, 朱英华. 生物质秸秆热重分析及几种动力学模型结果比较[J]. 燃料化学学报,2003,31(4):311−316. doi: 10.3969/j.issn.0253-2409.2003.04.005

    SONG Chun-cai, HU Hao-quan, ZHU Sheng-wei, ZHU Ying-hua. Thermogravimetric analysis of biomass straw and comparison of several kinetic models[J]. J Fuel Chem Technol,2003,31(4):311−316. doi: 10.3969/j.issn.0253-2409.2003.04.005
    [36] TIAN Y, PERRÉ P. Multiple-distribution DAEM modelling of spruce pyrolysis: An investigation of the best trade-off regarding the number and shape of distributions[J]. Energy Convers Manage,2021,229(2):113756.
    [37] CAI J, WU W, LIU R. A distributed activation energy model for the pyrolysis of lignocellulosic biomass[J]. Green Chem,2013,15(5):1331−1340. doi: 10.1039/c3gc36958g
    [38] OZAWA T. A new method of analyzing thermogravimetric data[J]. Bull Chem Soc Jpn,1965,38(11):1881−1886. doi: 10.1246/bcsj.38.1881
    [39] FLYNN J H, WALL L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Polym Sci B: Polym Lett,1966,4(5):323−328. doi: 10.1002/pol.1966.110040504
    [40] CAI J, JI L. Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass[J]. J Math Chem,2007,42(3):547−553. doi: 10.1007/s10910-006-9130-9
    [41] 杨海平, 陈汉平, 杜胜磊, 陈应泉, 王贤华, 张世红. 碱金属盐对生物质三组分热解的影响[J]. 中国电机工程学报,2009,17:70−75. doi: 10.3321/j.issn:0258-8013.2009.11.012

    YANG Hai-ping, CHEN Han-ping, DU Sheng-lei, CHEN Ying-quan, WANG Xian-hua, ZHANG Shi-hong. Influence of alkali salts on the pyrolysis of biomass three components[J]. CSEE JPES,2009,17:70−75. doi: 10.3321/j.issn:0258-8013.2009.11.012
    [42] MIURA K, MAKI T. A simple method for estimating f (E) and k 0 (E) in the distributed activation energy model[J]. Energy Fuels,1998,12(5):864−869. doi: 10.1021/ef970212q
    [43] 邢献军, 杨静, 范方宇, 李永玲, 张贤文. 木屑及其水热炭的热解特性和动力学对比[J]. 农业工程学报,2017,33(4):258−264.

    XING Xian-jun, YANG Jing, FAN Fang-yu, LI Yong-ling, ZHANG Xian-wen. Comparison of pyrolysis characteristics and kinetics of sawdust and its hydrothermal carbon[J]. Trans CSAE,2017,33(4):258−264.
    [44] MA Z, CHEN D, GU J, BAO B, ZHANG Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy Convers Manag,2015,89:251−259. doi: 10.1016/j.enconman.2014.09.074
    [45] VAMVUKA D, KAKARAS E, KASTANAKI E, GRAMMELIS P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite[J]. Fuel,2003,82(15/17):1949−1960. doi: 10.1016/S0016-2361(03)00153-4
    [46] TIBOLA F L, DE OLIVEIRA T J P, CERQUEIRA D A, ATAÍDE C H, CARDOSO C R. Kinetic parameters study for the slow pyrolysis of coffee residues based on thermogravimetric analysis[J]. Quim Nova,2020,43:426−434.
    [47] SORIA-VERDUGO A, GOOS E, GARCÍA-HERNANDO N, RIEDEL U. Analyzing the pyrolysis kinetics of several microalgae species by various differential and integral isoconversional kinetic methods and the distributed activation energy model[J]. Algal Res,2018,32:11−29. doi: 10.1016/j.algal.2018.03.005
    [48] GUO X, CAI J, YU X. Kinetics and thermodynamics of microalgae residue oxidative pyrolysis based on double distributed activation energy model with simulated annealing method[J]. Anal Appl Pyrolysis,2021,154:104997. doi: 10.1016/j.jaap.2020.104997
    [49] MARTINEZ A, MERIÑO L, ALBIS A, ORTEGA J. Comparative study of the reaction kinetics of three residual biomasses[J]. Bioresour, 2021, 16(2): 2891−2905.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  211
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-04
  • 修回日期:  2022-03-13
  • 录用日期:  2022-03-23
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-07-10

目录

    /

    返回文章
    返回