留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核壳型ZSM-5@Beta分子筛的制备及催化烷基化合成2,6-二甲基萘

盛路阳 展俊岭 张旭鹏 吴邦昊 张钰 张吉波

盛路阳, 展俊岭, 张旭鹏, 吴邦昊, 张钰, 张吉波. 核壳型ZSM-5@Beta分子筛的制备及催化烷基化合成2,6-二甲基萘[J]. 燃料化学学报(中英文), 2022, 50(9): 1202-1210. doi: 10.1016/S1872-5813(22)60014-8
引用本文: 盛路阳, 展俊岭, 张旭鹏, 吴邦昊, 张钰, 张吉波. 核壳型ZSM-5@Beta分子筛的制备及催化烷基化合成2,6-二甲基萘[J]. 燃料化学学报(中英文), 2022, 50(9): 1202-1210. doi: 10.1016/S1872-5813(22)60014-8
SHENG Lu-yang, ZHAN Jun-ling, ZHANG Xu-peng, WU Bang-hao, ZHANG Yu, ZHANG Ji-bo. Preparation of core-shell ZSM-5@Beta molecular sieve and catalytic alkylation to 2,6-dimethylnaphthalene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1202-1210. doi: 10.1016/S1872-5813(22)60014-8
Citation: SHENG Lu-yang, ZHAN Jun-ling, ZHANG Xu-peng, WU Bang-hao, ZHANG Yu, ZHANG Ji-bo. Preparation of core-shell ZSM-5@Beta molecular sieve and catalytic alkylation to 2,6-dimethylnaphthalene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1202-1210. doi: 10.1016/S1872-5813(22)60014-8

核壳型ZSM-5@Beta分子筛的制备及催化烷基化合成2,6-二甲基萘

doi: 10.1016/S1872-5813(22)60014-8
基金项目: 吉林省科技发展计划(20200401029GX)资助
详细信息
    通讯作者:

    Tel: 0432-62185139, E-mail:zhang99yu@hotmail.com

    zhangjb69@163.com

  • 中图分类号: TQ203.2

Preparation of core-shell ZSM-5@Beta molecular sieve and catalytic alkylation to 2,6-dimethylnaphthalene

Funds: The project was supported by the Science and Technology Development Foundation of Jilin Province (20200401029GX).
More Information
  • 摘要: 以ZSM-5分子筛为核相,通过聚二烯丙基二甲基氯化铵(PDDA)偶连纳米Beta分子筛晶种,经动态水热合成方法制备了ZSM-5@Beta核壳二元复合分子筛。采用XRD、N2吸附-脱附、SEM、TEM、ICP、NH3-TPD及Py-FTIR等手段对复合分子筛的结构和物性进行了表征,考察了复合分子筛催化2-甲萘(2-MN)与甲醇烷基化合成2,6-二甲基萘(2,6-DMN)的催化性能。结果表明,采用该方法制备出粒径约为500 nm的核壳结构ZSM-5@Beta复合分子筛。与机械混合二元分子筛相比,核壳结构材料具有更高的比表面积和外表面积,并降低了酸强度和强酸中心密度。通过限域催化理念、核壳界面和多级孔道的构建,借助12元环壳相Beta分子筛提高催化活性,利用10元环核相ZSM-5的择形催化作用提高催化选择性。在2-MN与甲醇烷基化反应中提高了2-MN的转化率和2,6-DMN的选择性,产物中2,6-/2,7-DMN比达到1.35,2,6-DMN收率达到4.29%。
  • FIG. 1884.  FIG. 1884.

    FIG. 1884.  FIG. 1884.

    图  1  样品的XRD谱图

    Figure  1  XRD patterns of the samples

    图  2  HBeta、HZSM-5、ZSM-5@Beta-m、ZSM-5@Beta-cs的扫描电镜图像和ZSM-5@Beta-cs的透射电镜图像

    Figure  2  SEM images of HBeta (a), HZSM-5 (b), ZSM-5@Beta-m (c), ZSM-5@Beta-cs (d) and TEM images of ZSM-5@Beta-cs ((e), (f))

    图  4  样品的NH3-TPD和Py-FTIR谱图

    Figure  4  NH3-TPD profiles (a) and Py-FTIR spectra (b) of the samples

    图  3  样品的氮气吸附-脱附等温线和孔径分布

    Figure  3  N2 adsorption-desorption isotherms (a) and mesoporous distribution curve (b) of the samples

    图  5  不同分子筛上2-MN与甲醇烷基化反应催化稳定性

    Figure  5  Catalytic stability of 2-MN alkylation with methanol over various molecular sieves

    (Reaction conditions: t = 400 ℃, WHSV2-MN = 1 h−1, n2-MN/nCH3OH/n1,3,5-TMB = 1∶4∶4, p = 0.2 MPa)

    图  6  ZSM-5@Beta核壳分子筛催化作用机理示意图

    Figure  6  Catalytic mechanism diagram of ZSM-5@Beta core-shell molecular sieve

    表  1  样品的孔结构参数

    Table  1  Pore structure parameter of the samples

    SampleABET/(m2·g−1)Aext/(m2·g−1)vtotal/(cm3·g−1)vmic/(cm3·g−1)vmes/(cm3·g−1)Ratio(Aext/ABET)
    HBeta656.40142.790.510.210.330.28
    HZSM-5297.1016.890.190.120.070.06
    HZSM-5@Beta-m449.36105.880.440.140.310.24
    HZSM-5@Beta-cs633.06169.110.450.190.270.27
    下载: 导出CSV

    表  2  元素组成、NH3-TPD和Py-FTIR谱图量化

    Table  2  Element composition, the quantitative results of NH3-TPD profile and Py-FTIR spectrum

    SampleSiO2/Al2O3Desorption peak area of NH3-TPD spectrumaAcidityb/(μmol∙g−1)Brønsted/Lewis
    100−250 ℃250−400 ℃400−550 ℃TotalLewisBrønsted
    HBeta30924145934227252022961.47
    HZSM-524.215066177672890251004.00
    HZSM-5@Beta-m27.590911019672977772543.30
    HZSM-5@Beta-cs25.8101895924722241332221.67
    a: Peak area Gaussian fitting of NH3-TPD spectrum;
    b: Quantitative results of Py-FTIR spectrum
    下载: 导出CSV

    表  3  2-MN与甲醇烷基化反应的催化性能a

    Table  3  Catalytic performance of 2-MN alkylation with methanol over molecular sievesa

    CatalystHBetaHZSM-5HZSM-5@Beta-mHZSM-5@Beta-cs
    Conversion x/%
    2-MN90.9431.3455.1861.62
    Distributionb s/%
    NA1.843.958.174.47
    DMNs44.3727.4443.5447.15
    TMNs45.460.000.0015.96
    1-MN8.3368.6148.2932.42
    β,β-DMN/DMNs30.0852.6938.5734.15
    2,6-DMN/DMNs11.7316.2416.4612.85
    2,6-/2,7-DMN0.900.680.990.89
    2,6-DMN selectivityc s/%2.774.525.526.01
    2,6-DMN yieldd w/%2.521.423.043.70
    a: t = 400 ℃, WHSV2-MN=1 h−1, n2-MN/nCH3OH/n1,3,5-TMB = 1∶4∶4, p = 0.2 MPa, TOS = 1 h;
    b: Mole of 2-MN derivatives in products × 100/mole of 2-MN in raw materials, including NP(Naphthalene), DMNs(Dimethyl naphthalene) TMNs(Trimethyl naphthalene) and 1-MN(1-methylnaphthalene);
    c: Mole of 2,6-DMN in products × 100/(mole of 2-MN in raw materials-mole of 2-MN in products);
    d: Mole of 2,6-DMN in products×100/mole of 2-MN in raw materials
    下载: 导出CSV
  • [1] WANG X X, WEN J, ZHANG W, ZHAO L F, WEI W. Synthesis of 2, 6-dimethyl naphthalene over SAPO-11 zeolite[J]. China Pet Process Petrochem Technol,2012,41(11):1282−1287.
    [2] SANHOOB M A, MURAZA O, TAGO T, TANIGUCHI T, WATAANBE G, MASUDA T. Development of mesoporous ZSM-12 zeolite and its application in alkylation of 2-methylnaphthalene[J]. Res Chem Intermed,2016,42(7):1−12.
    [3] CHOBSA-ARD A, KRAIKUL N, RANGSUNVIGIT P, KULPRATHIPANJA S. Influences of solvents on the production of high purity 2, 6-dimethylnaphthalene via catalytic isomerization and adsorptive separation[J]. Chem Eng J,2008,139(1):78−83. doi: 10.1016/j.cej.2007.07.086
    [4] GULEC F, NIFTALIYEVA A, KARADUMAN A. Selective synthesis of 2, 6-triad dimethylnaphthalene isomers by disproportionation of 2-methylnaphthalene over mesoporous MCM-41[J]. Res Chem Intermed,2018,44:7205−7218. doi: 10.1007/s11164-018-3551-5
    [5] LI H J, GONG Q, LIANA H, DING L F, HU Z H, ZHU Z R. Transalkylation of C10 aromatics with 2-methylnaphthalene for 2, 6-dimethylnaphthalene synthesis: High-efficiently shape-selective & synergistic catalysis over a multifunctional SiO2-Mo-HBeta catalyst[J]. J Catal,2019,378:144−152. doi: 10.1016/j.jcat.2019.08.030
    [6] WATANABE G, NAKASAKA Y, TANIGUCHI T, YOSHIKAWA T, TAGO T, MASUDA T. Kinetic studies on high-pressure methylation of 2-methylnaphthalene over MTW-type zeolite with different crystal sizes[J]. Chem Eng J,2016,312:288−295.
    [7] 王亚涛, 张新异, 房承宣, 靳立军, 郭学华, 胡浩权. 中空ZSM-5分子筛的制备及其在2-甲基萘烷基化合成2, 6-二甲基萘中的应用[J]. 石油化工,2012,41(12):1351−1356. doi: 10.3969/j.issn.1000-8144.2012.12.003

    WANG Ya-tao, ZHANG Xin-yi, FANG Chen-xuan, JIN Li-jun, HU Hao-quan. Preparation of hollow ZSM-5 and its application in methylation of 2-methylnaphthalene to 2, 6-dimethylnaphthalene[J]. Chin Petrochem Technol,2012,41(12):1351−1356. doi: 10.3969/j.issn.1000-8144.2012.12.003
    [8] PARK J N, WANG J, HONG S I, LEE C W. Effect of dealumination of zeolite catalysts on methylation of 2–methylnaphthalene in a high-pressure fixed-bed flow reactor[J]. Appl Catal A: Gen,2005,292:68−75. doi: 10.1016/j.apcata.2005.05.039
    [9] LUAN S, JIN L J, GUO X, YU Y, WANG Y. Synthesis of mesoporous ZSM-5 zeolite and its application in alkylation of 2-methylnaphthalene with methanol[J]. Acta Pet Sin (Pet Process Sect),2014,30(2):204−210.
    [10] YE Z, FENG J P, LYU Z J, LI X K. Improved stability and shape selectivity of 2, 6-dimethylnaphthalene by methylation of naphthalene with methanol on modified zeolites[J]. Mod Res Catal,2014,3(2):19−25. doi: 10.4236/mrc.2014.32004
    [11] MILLINI R, FRIGERIO F, BELLUSSI G, PAZZUCONI G, PEREGO C, POLLESEL P, ROMANO U. A priori selection of shape-selective zeolite catalysts for the synthesis of 2, 6-dimethylnaphthalene[J]. J Catal,2003,217(2):298−309. doi: 10.1016/S0021-9517(03)00071-X
    [12] OZERENKO A A, GYULMALIEV A M, GAGARIN S G. Factorial analysis in selecting the zeolite catalyst for 2, 6-dimethylnaphthalene synthesis[J]. Coke Chem,2007,50(7):200−206. doi: 10.3103/S1068364X07070046
    [13] SONG C S, SHEN J P, REDDY K M, SUN L, LILLWITZ L D. Shape-selective Fe-MFI catalyst for synthesis of 2, 6-dimethylnaphthalene by methylation with methanol[J]. Stud Surf Sci Catal,2007,170(7):1275−1282.
    [14] FATIH G, FAROOQ S, ALI K. Catalytic performance of Cu- and Zr-modified beta zeolite catalysts in the methylation of 2-methylnaphthalene[J]. Pet Sci,2019,(1):161−172.
    [15] 张凤, 高志贤, 吾满江·艾力. Co/Hβ分子筛催化甲基萘烷基化的反应特征[J]. 工业催化,2011,19(9):63−68. doi: 10.3969/j.issn.1008-1143.2011.09.014

    ZHANG Feng, GAO Zhi-xian, WU Man-jiang·AI Li. Catalytic alkylation of methyl naphthalene by Co/Hβ zeolite[J]. Ind Catal,2011,19(9):63−68. doi: 10.3969/j.issn.1008-1143.2011.09.014
    [16] JIN L J, ZHOU X J, HU H Q, MA B. Synthesis of 2, 6-dimethylnaphthalene by methylation of 2-methylnaphthalene on mesoporous ZSM-5 by desilication[J]. Catal Commun,2009,10(3):336−340.
    [17] LIANG Z. Methylation of 2-methylnaphthalene with methanol over NH4F and Pt modified HZSM-5 catalysts[J]. Chin J Chem Eng,2010,18(5):742−749. doi: 10.1016/S1004-9541(09)60123-3
    [18] LI H J, GONG Q, LIANA H, HU Z H, ZHU Z R. New process for 2, 6-dimethylnaphthalene synthesis by using C10 aromatics as solvent and transmethylation-agentia: High-efficiency and peculiar subarea-catalysis over shape-selective ZSM-5/Beta catalyst[J]. Ind Eng Chem Res,2019,58(28):12593−12601. doi: 10.1021/acs.iecr.9b01596
    [19] 刘晓芳. 核壳结构分子筛复合材料的合成、表征及应用[D]. 长春: 吉林大学, 2018.

    LIU XIao-fang. Synthesis、characterization and application of core-shell molecular sieve composites[D]. Changchun: Jilin University, 2018.
    [20] WANG X X, GUO F, WEI X X, LIU Z M, WANG C Y, GUO S Q, WANG Y Y, YU Y. Retraction Note to: Study on methylation of naphthalene with methanol over ZSM-5(core)/SAPO-11(shell) composite molecular sieve[J]. Russ J Appl Chem,2018,91(6):1002−1008. doi: 10.1134/S1070427218060198
    [21] 张佩珊, 马波, 杨卫亚, 凌凤香, 沈智奇, 王少军, 候宇鑫. 核壳结构Beta/MCM-22双微孔复合分子筛的合成与表征[J]. 燃料化学学报,2014,42(10):1240−1245. doi: 10.3969/j.issn.0253-2409.2014.10.013

    ZHANG Pei-shan, MA Bo, YANG Wei-ya, LING Feng-xiang, SHEN Zhi-qi, WANG Shao-jun, HOU Yu-xin. Synthesis and characterization of core-shell Beta/MCM-22 composite molecular sieves[J]. J Fuel Chem Technol,2014,42(10):1240−1245. doi: 10.3969/j.issn.0253-2409.2014.10.013
    [22] 王改, 杨冬花, 薄琼, 李玉鹏, 胡丽, 李晓峰, 窦涛. 具有多级孔MCM-41/Y复合分子筛的合成及表征[J]. 分子催化,2018,32(4):325−333.

    WANG Gai, YANG Dong-hua, BO Qiong, LI Yu-peng, HU Li, LI Xiao-feng, DOU Tao. Synthesis and characterization of MCM-41/Y composite molecular sieves with Multi-pore structure[J]. J Mol Catal,2018,32(4):325−333.
    [23] 李君华, 谢锦印, 张丹, 刘琳, 邢锦娟. 碱改性ZSM-5分子筛及其甲醇芳构化性能[J]. 燃料化学学报, 2021, 49(3): 338–345.

    LI Jun-hua, XIE Jin-yin, ZHANG Dan, LIU Lin, XING Jin-juan. J Fuel Chem Technol, 2021, 49(3): 338–345.
    [24] VALTCHEV V P, SMAIHI M, FAUST A C, VIDAL L. Equisetum a rvense templating of zeolite beta macrostructures with hierarchical porosity[J]. Chem Mater,2018,16(7):1350−1355.
    [25] 邵秀丽. 晶种法合成整体式多级孔ZSM-5分子筛[J]. 工业催化,2019,27(6):49−53. doi: 10.3969/j.issn.1008-1143.2019.06.008

    SHAO Xiu-li. Synthesis of multiporous ZSM-5 zeolite by crystal seed method[J]. Ind Catal,2019,27(6):49−53. doi: 10.3969/j.issn.1008-1143.2019.06.008
    [26] 王迎运, 周亚松, 魏强, 杨晓宇. Y/β复合分子筛制备方法及应用研究进展[J]. 化工进展,2016,35(S2):155−159.

    WANG Ying-yun, ZHOU Ya-song, WEI Qiang, YANG Xiao-yu. Progress in preparation and application of Y/β composite molecular sieves[J]. Chem Ind Eng Prog (China),2016,35(S2):155−159.
    [27] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Chem Inform,2010,24(2):347−354.
    [28] 刘晓飒, 陈淑俊, 赵铁英, 李德艳, 白小鸽, 留琴. 吡啶-热脱附-红外法确定催化剂酸性[J]. 工业催化,2015,23(10):817−820. doi: 10.3969/j.issn.1008-1143.2015.10.018

    LIU Xiao-sa, CHEN Shu-jun, ZHAO Tie-ying, LI De-yan, BAI Xiao-ge, LIU Qin. Determination of acidity of catalyst by pyridine thermal desorption and infrared spectroscopy[J]. Ind Catal,2015,23(10):817−820. doi: 10.3969/j.issn.1008-1143.2015.10.018
    [29] 薛彦峰, 牛宇岚, 郑洪岩, 崔晓静, 马庆国, 唐建可, 丁莉峰. ZSM-5分子筛水蒸气选择性脱铝及其对乙醇转化制丙烯的影响[J]. 燃料化学学报,2021,49(8):1111−1121. doi: 10.1016/S1872-5813(21)60064-6

    XUE Yan-feng, NIU Yu-lan, ZHENG Hong-yan, CUI Xiao-jing, MA Qing-guo, TANG Jian-ke, DING Li-feng. Water vapor selective dealuminization of ZSM-5 zeolite and its effect on ethanol conversion to propylene[J]. J Fuel Chem Technol,2021,49(8):1111−1121. doi: 10.1016/S1872-5813(21)60064-6
    [30] 靳立军, 刘斯宝, 胡浩权. 纳米晶堆积结构ZSM-5微球的合成及其在2-甲基萘甲基化中的应用[J]. 石油学报(石油加工),2015,31(3):705−710.

    JIN Li-jun, LIU Si-bao, HU Hao-quan. Synthesis of nanocrystalline stacked ZSM-5 microspheres and their application in methylation of 2-methylnaphthalene[J]. Acta Pet Sin (Pet Process Sec),2015,31(3):705−710.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  195
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 修回日期:  2022-03-21
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2022-10-21

目录

    /

    返回文章
    返回