留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合胺溶液耦合CaO吸收-矿化CO2特性及矿化过程关键影响因素研究

王中辉 苏胜 马智伟 宋亚伟 陈逸峰 刘涛 江龙 汪一 胡松 向军

王中辉, 苏胜, 马智伟, 宋亚伟, 陈逸峰, 刘涛, 江龙, 汪一, 胡松, 向军. 混合胺溶液耦合CaO吸收-矿化CO2特性及矿化过程关键影响因素研究[J]. 燃料化学学报(中英文), 2022, 50(10): 1371-1380. doi: 10.1016/S1872-5813(22)60020-3
引用本文: 王中辉, 苏胜, 马智伟, 宋亚伟, 陈逸峰, 刘涛, 江龙, 汪一, 胡松, 向军. 混合胺溶液耦合CaO吸收-矿化CO2特性及矿化过程关键影响因素研究[J]. 燃料化学学报(中英文), 2022, 50(10): 1371-1380. doi: 10.1016/S1872-5813(22)60020-3
WANG Zhong-hui, SU Sheng, MA Zhi-wei, SONG Ya-wei, CHEN Yi-feng, LIU Tao, JIANG Long, WANG Yi, HU Song, XIANG Jun. Study on CO2 absorption-mineralization characteristics of mixed amine solution coupled with CaO and key influencing factors in mineralization process[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1371-1380. doi: 10.1016/S1872-5813(22)60020-3
Citation: WANG Zhong-hui, SU Sheng, MA Zhi-wei, SONG Ya-wei, CHEN Yi-feng, LIU Tao, JIANG Long, WANG Yi, HU Song, XIANG Jun. Study on CO2 absorption-mineralization characteristics of mixed amine solution coupled with CaO and key influencing factors in mineralization process[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1371-1380. doi: 10.1016/S1872-5813(22)60020-3

混合胺溶液耦合CaO吸收-矿化CO2特性及矿化过程关键影响因素研究

doi: 10.1016/S1872-5813(22)60020-3
基金项目: 国家自然科学基金(U20A20302)资助
详细信息
    通讯作者:

    Tel: 13317181417, E-mail: susheng@mail.hust.edu.cn

  • 中图分类号: TQ127.1+3

Study on CO2 absorption-mineralization characteristics of mixed amine solution coupled with CaO and key influencing factors in mineralization process

Funds: The project was supported by National Natural Science Foundation of China (U20A20302).
  • 摘要: 有机胺捕集CO2是一种有效的燃烧后碳捕集(PCC)技术,同时CO2矿物碳酸化是一种安全和稳定封存CO2的方法。本研究通过将两种方式结合,以MEA/MDEA混合胺溶液作为CO2吸收剂,以CaO作为CO2矿化原料,研究了不同混合胺溶液配比、温度、反应时间和CaO添加比例等条件下混合胺溶液耦合CaO吸收-矿化CO2性能。结果表明,在常温常压下CaO可对MEA/MDEA溶液中吸收的CO2进行有效矿化并同时实现MEA/MDEA溶液的再生;并且经过五次循环吸收-矿化实验后,MEA/MDEA溶液仍保持了较高的CO2转化率(77.4%)和CO2循环负荷(1.03 mol/L)。FT-IR和XRD表征分析表明,CaO的添加向MEA/MDEA溶液中提供了大量Ca2+和OH,可分别与溶液中的${\rm{CO}}_3^{2-} /{\rm{HCO}}_3^- $、质子化胺反应生成碳酸钙沉淀和游离胺,从而同时完成对CO2的矿化和MEA/MDEA溶液的化学再生;并且得到的固体产物主要成分为碳酸钙,方解石是其主要晶型。
  • FIG. 1935.  FIG. 1935.

    FIG. 1935.  FIG. 1935.

    图  1  CO2吸收和矿化反应系统示意图

    Figure  1  (a) System of CO2 absorption, (b) system of CO2 mineralization

    1: gas cylinder; 2: pressure reducing valve; 3: mass flowmeter; 4: mixing tank; 5: buffer bottle; 6: CO2 bubbling absorption device; 7: thermostatic heating magnetic stirrer; 8: pH meter; 9: serpentine condenser; 10: drying tube; 11: flue gas analyzer; 12: slurry reaction device; 13: filter unit

    图  2  不同混合胺溶液配比条件下CO2吸收速率(a),不同混合胺溶液配比条件下CO2吸收负荷(b)

    Figure  2  (a) CO2 absorption rate with different mix ratios of amine solutions, (b) CO2 absorption loading with different mix ratios of amine solutions (40 ℃, 180 min)

    图  3  不同混合胺溶液配比条件下CO2吸收富液FT-IR谱图

    Figure  3  FT-IR spectra of CO2 absorption rich solution with different mix ratios of amine A: 1 mol/L MEA + 2 mol/L MDEA; B: 1.5 mol/L MEA + 1.5 mol/L MDEA; C: 2 mol /L MEA + 1 mol/L MDEA; D: 3 mol/L MEA; E: 3 mol/L MDEA

    图  4  不同混合胺溶液配比条件下CO2矿化性能

    Figure  4  CO2 mineralization performance with different mix ratios of amine solutions A: 1 mol/L MEA + 2 mol/L MDEA; B: 1.5 mol/L MEA + 1.5 mol/L MDEA; C: 2 mol/L MEA + 1 mol/L MDEA; D: 3 mol/L MEA;E: 3 mol/L MDEA (40 ℃, 90 min, 500 r/min, CaO addition ratio = 1∶1)

    图  5  不同温度条件下CO2矿化性能

    Figure  5  CO2 mineralization performance under different temperatures (mixed amine solution: 2 mol/L MEA+1 mol/L MDEA, 60 min, 500 r/min, CaO addition ratio=1:1)

    图  6  不同反应时间下CO2矿化性能

    Figure  6  CO2 mineralization performance under different reaction time (mixed amine solution: 2 mol/L MEA+1 mol/L MDEA, 40 ℃, 500 r/min, CaO addition ratio=1:1)

    图  7  不同CaO添加比例条件下CO2矿化性能

    Figure  7  CO2 mineralization performance under different CaO addition (ratios of mixed amine solution: 2 mol/L MEA+1 mol/L MDEA, 40 ℃, 60 min, 500 r/min)

    图  8  2 mol/L MEA + 1 mol/L MDEA混合胺溶液经五次吸收-矿化实验后的循环性能

    Figure  8  Cyclic mineralization performance of 2 mol/L MEA+1 mol/L MDEA mixed amine solution (40 ℃, 60 min, 500 r/min, CaO addition ratio=1:1)

    图  9  不同反应条件下MEA/MDEA贫液FT-IR谱图

    Figure  9  FT-IR spectra of MEA/MDEA lean solution under different reaction conditions (a): temperature; (b): reaction time; (c): CaO addition ratio

    图  10  不同反应条件下得到的固体产物XRD谱图

    Figure  10  XRD patterns of solid products obtained under different reaction conditions(a): temperature; (b): reaction time; (c): CaO addition ratio

    表  1  MEA/MDEA混合胺溶液耦合CaO吸收-矿化CO2反应过程

    Table  1  CO2 reactions in the absorption-mineralization process with MEA/MDEA mixed amine solution coupling CaO

    CO2 absorption processMEARNH2 + CO2 (aq) ↔ ${\rm{RNH} }^{\text{+} } _{2 }$COO(Zwitterion)(1)
    ${\rm{RNH} }^+_{2 }$COO + RNH2 ↔ RNHCOO +${\rm{RNH} }^ +_{3}$ (Protonated amine)(2)
    RNHCOO + H2O ↔ RNH2 + ${\rm{HCO}}_{3}^{{{ - }}} $(3)
    MDEACO2 (aq) + H2O ↔ H2CO3 ↔ H+ + ${\rm{HCO}}_{3}^{{{ - }}} $(4)
    R1R2R3N + H+ → R1R2R3NH+(Protonated amine)(5)
    CO2 mineralization processCaO(s) + H2O → Ca2+ + 2OH(6)
    Ca2+ + ${\rm{HCO}}_{3}^{{\rm{ - }}} $ → CaCO3↓+ H+(7)
    ${\rm{HCO}}_{3}^{{{ - }}} $ + OH ↔ ${\rm{CO}}_{3}^{{2}{ - }} $ + H2O(8)
    Ca2++$ {\rm{CO}}_{3}^{{2}{\rm{ - }}} $→CaCO3(9)
    Mixed amine chemical
    regeneration process
    MEA$ {\rm{RNH}}_{3}^+$ + OH ↔ RNH2 + H2O(10)
    MDEAR1R2R3NH+ + OH ↔ R1R2R3N + H2O(11)
    Note: RNH2 represents MEA, R1R2R3N represents MDEA, and R, R1, R2 and R3 represent different alkyl side chains
    下载: 导出CSV
  • [1] KAMRAN U, PARK S J. Chemically modified carbonaceous adsorbents for enhanced CO2 capture: A review[J]. J Clean Prod,2021,290:125776. doi: 10.1016/j.jclepro.2020.125776
    [2] ZHANG Z W, BORHANI T N, OLABI A G. Status and perspective of CO2 absorption process[J]. Energy,2020,205:118057. doi: 10.1016/j.energy.2020.118057
    [3] JIANG K, ASHWORTH P. The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective[J]. Renewable Sustainable Energy Rev,2021,138:110521. doi: 10.1016/j.rser.2020.110521
    [4] YU B, YU H, LI K K, JI L, YANG Q, WANG X L, CHEN Z L, MEGHARAJ M. A diamine-based integrated absorption-mineralization process for carbon capture and sequestration: energy savings, fast kinetics, and high stability[J]. Environ Sci Technol,2018,52:13629−13637. doi: 10.1021/acs.est.8b04253
    [5] HONG S J, SIM G, MOON S, PARK Y. Low-temperature regeneration of amines integrated with production of structure-controlled calcium carbonates for combined CO2 capture and utilization[J]. Energy Fuels,2020,34:3532−3539. doi: 10.1021/acs.energyfuels.9b04339
    [6] LIU W, SU S, XU K, CHEN Q D, XU J, SUN Z J, WANG X L, XUE Y T, XIANG J. CO2 sequestration by direct gas-solid carbonation of fly ash with steam addition[J]. J Clean Prod,2018,178:98−107. doi: 10.1016/j.jclepro.2017.12.281
    [7] 王中辉, 苏胜, 尹子骏, 安晓雪, 赵志刚, 陈逸峰, 刘涛, 汪一, 胡松, 向军. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展,2021,40(4):2318−2327.

    WANG Zhong-hui, SU Sheng, YIN Zi-jun, AN Xiao-xue, ZHAO Zhi-gang, CHEN Yi-feng, LIU Tao, WANG Yi, HU Song, XIANG Jun. Research progress of CO2 mineralization and integrated absorption-mineralization (IAM) method[J]. Chem Eng Prog,2021,40(4):2318−2327.
    [8] 林海周, 杨晖, 罗海中, 裴爱国, 方梦祥. 烟气二氧化碳捕集胺类吸收剂研究进展[J]. 南方能源建设,2019,6(1):16−21.

    LIN Hai-zhou, YANG Hui, LUO Hai-zhong, PEI Ai-guo, FANG Meng-xiang. Research progress on amine absorbent for CO2 capture from flue gas[J]. South Energy Constr,2019,6(1):16−21.
    [9] HADRI N E, QUANG D V, GOETHEER E L V, ZAHRA M R M A. Aqueous amine solution characterization for post-combustion CO2 capture process[J]. Appl Energy,2017,185:1433−1449. doi: 10.1016/j.apenergy.2016.03.043
    [10] XIAO M, LIU H L, IDEAM R, TONTIWACHWUTHIKUL P, LIANG Z W. A study of structure-activity relationships of commercial tertiary amines for post-combustion CO2 capture[J]. Appl Energy,2016,184:219−229. doi: 10.1016/j.apenergy.2016.10.006
    [11] SEMA T, NAAMI A, FU K Y, EDALI M, LIU H L, SHI H C, LIANG Z W, IDEM R, TONTIWACHWUTHIKUL P. Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA-MEA[J]. Chem Eng J,2012,209:501−512. doi: 10.1016/j.cej.2012.08.016
    [12] RIVERA-TINOCO R, BOUALLOU C. Comparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 capture[J]. J Clean Prod,2010,18:875−880. doi: 10.1016/j.jclepro.2009.12.006
    [13] PARK S, MIN J, LEE M G, JO H Y, PARK J. Characteristics of CO2 fixation by chemical conversion to carbonate salts[J]. Chem Eng J,2013,231:287−293. doi: 10.1016/j.cej.2013.07.032
    [14] PARK S, LEE M G, PARK J. CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods[J]. Energy,2013,59:737−742. doi: 10.1016/j.energy.2013.07.057
    [15] ARTI M, YOUN M H, PARK K T, KIM H J, KIM Y E, JEONG S K. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride[J]. Energy Fuels,2017,31(1):763−769. doi: 10.1021/acs.energyfuels.6b02448
    [16] KANG J M, MURNANDARI A, YOUN M H, LEE W, PARK K T, KIM Y E, KIM H J, KANG S P, LEE J H, JEONG S K. Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process[J]. Chem Eng J,2018,335:338−344. doi: 10.1016/j.cej.2017.10.136
    [17] JI L, YU H, LI K K, YU B, GRIGORE M, YANG Q, WANG X L, CHEN Z L, ZENG M, ZHAO S F. Integrated absorption-mineralization for low-energy CO2 capture and sequestration[J]. Appl Energy,2018,225:356−366. doi: 10.1016/j.apenergy.2018.04.108
    [18] 马伟春, 张卫风, 焦月潭, 黄珍, 李靳, 钟林新. 钙法解吸并固定乙醇胺富液中CO2[J]. 环境科学学报,2018,38(1):109−114.

    MA Wei-chun, ZHANG Wei-feng, JIAO Yue-tan, HUANG Zhen, LI Jin, ZHONG Lin-xin. Desorption and mineralization of CO2 in monoethanolamine-rich solution by calcium method[J]. Acta Sci Circumst,2018,38(1):109−114.
    [19] YAN S, FANG M X, LUO Z Y, CEN K F. Regeneration of CO2 from CO2-rich alkanolamines solution by using reduced thickness and vacuum technology: Regeneration feasibility and characteristic of thin-layer solvent[J]. Chem Eng Process,2009,48(1):515−523. doi: 10.1016/j.cep.2008.06.009
    [20] LUO C, WU K J, YUE H R, LIU Y Y, ZHU Y M, JIANG W, LU H F, LIANG B. DBU-based CO2 absorption-mineralization system: Reaction process, feasibility and process intensification[J]. Chin J Chem Eng,2020,28(4):1145−1155. doi: 10.1016/j.cjche.2019.12.008
    [21] ABASS A O. A review of mineral carbonation technology in sequestration of CO2[J]. J Pet Sci Eng,2013,109:364−392. doi: 10.1016/j.petrol.2013.03.013
    [22] 王晓龙, 刘蓉, 纪龙, 郜时旺, 姜宁. 利用粉煤灰与可循环碳酸盐直接捕集固定电厂烟气中二氧化碳的液相矿化法[J]. 中国电机工程学报,2018,38(19):5787−5794.

    WANG Xiao-long, LIU Rong, JI Long, GAO Shi-wang, JIANG Ning. A new direct aqueous mineralization process using fly ash and recyclable carbonate salts to capture and storage CO2 from flue-gas[J]. Proc CSEE,2018,38(19):5787−5794.
    [23] GILLES R, GRAEME P. Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR[J]. Ind Eng Chem Res,2012,51:14317−14324. doi: 10.1021/ie302056f
    [24] ROBINSON K, MCCLUSKEY A, ATTALLA M. An FTIR spectroscopic study on the effect of molecular structural variations on the CO2 absorption characteristics of heterocyclic amines[J]. ChemPhysChem,2011,12:1088−1099. doi: 10.1002/cphc.201001056
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  259
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-04-02
  • 录用日期:  2022-04-07
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回