留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2/GO的制备及其室温可见光催化脱硝性能

王淑勤 李晓雪 武金锦

王淑勤, 李晓雪, 武金锦. TiO2/GO的制备及其室温可见光催化脱硝性能[J]. 燃料化学学报(中英文), 2022, 50(10): 1307-1315. doi: 10.1016/S1872-5813(22)60025-2
引用本文: 王淑勤, 李晓雪, 武金锦. TiO2/GO的制备及其室温可见光催化脱硝性能[J]. 燃料化学学报(中英文), 2022, 50(10): 1307-1315. doi: 10.1016/S1872-5813(22)60025-2
WANG Shu-qin, LI Xiao-xue, WU Jin-jin. Preparation of TiO2/graphene oxide and their photocatalytic properties at room temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1307-1315. doi: 10.1016/S1872-5813(22)60025-2
Citation: WANG Shu-qin, LI Xiao-xue, WU Jin-jin. Preparation of TiO2/graphene oxide and their photocatalytic properties at room temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1307-1315. doi: 10.1016/S1872-5813(22)60025-2

TiO2/GO的制备及其室温可见光催化脱硝性能

doi: 10.1016/S1872-5813(22)60025-2
基金项目: 国家重点研发计划(2018YFB060420103)和河北省自然科学基金(E2014502111)资助
详细信息
    通讯作者:

    E-mail: wsqhg@163.com

  • 中图分类号: X511

Preparation of TiO2/graphene oxide and their photocatalytic properties at room temperature

Funds: The project was supported by the National Basic Research Program of China (2018YFB060420103) and National Natural Science Foundation of Hebei Province (E2014502111)
  • 摘要: 采用水热法制备出不同氧化石墨烯(GO)复合比例的TiO2/GO催化剂,并进行了SEM、TEM、XRD、UV-vis、XPS、拉曼光谱、光电流表征分析测试。结果显示,TiO2与TiO2/GO晶型都是锐钛矿型,GO在与钛酸丁酯水热反应制备TiO2/GO时部分被还原成还原氧化石墨烯(RGO),性质更接近于石墨烯,有利于光电子转移。复合材料TiO2/GO晶粒尺寸减小,吸附氧/晶格氧的比例增高,利于NO的氧化,禁带宽度缩小,吸收可见光能力更强,光电子响应能力得到提高。可见光下评价了对复合材料的光催化脱硝性能。GO的复合比例为1.5%时所得催化剂光催化脱硝性能最好。在氨氮比为1∶1时,脱硝效率为88.6%,与水热自制TiO2相比提高了30%,比商用V-Ti-W催化剂的效率提高了40%,且复合材料的抗干扰能力明显优于商用V-Ti-W催化剂。机理分析也表明,NO的氧化速率对光催化脱硝反应进程起到了关键作用,且氨气的存在可以加快对NO2的还原。
  • FIG. 1928.  FIG. 1928.

    FIG. 1928.  FIG. 1928.

    图  1  TiO2/GO光催化脱硝反应流程示意图

    Figure  1  TiO2/GO photocatalytic denitration diagram

    图  2  不同样品的TEM照片

    Figure  2  TEM images of different samples

    (a), (b): TiO2/GO-0.5%; (c), (d): TiO2/GO-1.5%

    图  3  不同样品的X射线衍射谱图

    Figure  3  X-ray diffraction patterns of different samples

    图  4  不同样品的XPS扫描谱图

    Figure  4  XPS scanning spectra of different samples

    (a): full spectrum; (b): narrow range scanning spectrum of O element; (c): narrow range scanning spectrum of Ti element; (d): scanning spectrum of TiO2 and TiO2/GO-1.5%

    图  5  不同样品的拉曼光谱谱图

    Figure  5  Raman spectra of different samples

    图  6  催化剂的UV-vis DRS谱图

    Figure  6  UV-vis DRS spectra of catalysts

    (a): UV-vis diffuse reflectance spectra; (b): photon energy spectra

    图  7  不同样品的光电流谱图

    Figure  7  Photocurrent spectra of different samples

    图  8  催化剂的光催化脱硝

    Figure  8  Effect diagram of photocatalytic denitration of catalyst

    (a): comparison of photocatalytic effect; (b): influence of molecular sieve and light source

    图  9  不同因素对光催化脱硝效果的影响

    Figure  9  Effects of different factors on photocatalytic denitration

    (a): atmospheric humidity; (b): SO2 concentration; (c): ammonia nitrogen ratio; (d): continuous use times

    图  10  催化剂的一级动力学拟合

    Figure  10  First order kinetic fitting diagram of catalyst

    图  11  光催化脱硝机理示意图

    Figure  11  Schematic diagram of photocatalytic denitration mechanism

    图  12  催化剂氧化速率对比

    Figure  12  Comparison chart of catalyst oxidation rate

    表  1  催化剂表征分析手段

    Table  1  Catalyst characterization and analysis methods

    CategoryManufacturer modelMain parameter
    TEM Tecnai G2 F20 S-TWIN detection voltage:200 kV
    XRD Dandong Tongda Technology Co., Ltd; TD-3500 scanning speed 10(°)/min range 10°–90°
    XPS Thermo Scientific Escalab 250X radiation source: Al Kα =1361 eV
    Roman HORIBA JY:LabRAM HR Evolution excitation wavelength: 532 nm
    UV-vis Shimadzu:UV2450 background: BaSO4
    Photocurrent Chi760e electrochemical workstation (Zhongjiao Jinyuan) three electrode system
    下载: 导出CSV
  • [1] GHOLAMI F, TOMAS M, GHOLAMI Z, VAKILI M. Technologies for the nitrogen oxides reduction from flue gas: A review[J]. Sci Total Environ,2020,714:136712.1−136712.26.
    [2] GONG X, ZHAO R, QIN J, WANG H, WANG D. Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature[J]. Chem Eng J,2019,358:291−298. doi: 10.1016/j.cej.2018.09.222
    [3] VAN CANEGHEM J, DE GREEF J, BLOVK C, VANDECASTEELE C. NOx reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: a case study[J]. J Cleaner Prod,2016,112:4452−4460. doi: 10.1016/j.jclepro.2015.08.068
    [4] HAMOUD H I, LAFJAH M, DOUMA F, LEBEDEV O I, DJAFRE F, VALCHEV V, DATURI M, EL-ROZ M. Photo-assisted SCR over highly dispersed silver sub-nanoparticles in zeolite under visible light: An Operando FTIR study[J]. Sol Energy,2019,189:244−253. doi: 10.1016/j.solener.2019.07.020
    [5] 李丹. MOFs和复合TiO2联合低温脱硝性能的实验研究[D]. 保定: 华北电力大学, 2019.

    LI Dan. The study on combined denitration performance at low temperature by MOFs and composited TiO2[D]. Baoding: North China Electric Power University , 2019.
    [6] ZHU C, LI G, LIAN Z, WAN Z, HUANG R, ZHANG S, ZHONG Q. Effect of synergy between oxygen vacancies and graphene oxide on performance of TiO2 for photocatalytic NO removal under visible light[J]. Sep Purif Technol,2021,276:119362. doi: 10.1016/j.seppur.2021.119362
    [7] 甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 金红石相TiO2-石墨烯复合材料的制备及其光催化性能[J]. 物理化学学报, 2013, 29(2): 403–410.

    GAN Yong-ping, QIN Huai-peng, HUANG Hui, TAO Xin-yong, FANG Jun-wu, ZHANG Wen-kui. Preparation and photocatalytic activity of rutile TiO2-graphene composites[J]. Acta Phys -Chim Sin, 2013, 29(2): 403–410.
    [8] WANG W-S, WANG D-H, QU W-G, LU L-Q, XU A-W. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity[J]. J Phys Chem C,2012,116(37):19893−19901. doi: 10.1021/jp306498b
    [9] 龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 部分还原氧化石墨烯/二氧化钛复合材料的水热合成及其光催化活性[J]. 物理化学学报, 2013, 29(6): 1344–1350.

    LONG Mei, CONG Ye, LI Xuan-Ke, CUI Zheng-wei, DONG Zhi-jun, YUAN Guan-ming. Hydrothermal synthesis and photocatalytic activity of partially reduced graphene oxide/TiO2 composite[J]. Acta Phys -Chim Sin, 2013, 29(6): 1344–1350.
    [10] TRAPALIS A, TODOROVA N, GIANNAKOPOULOU T, BOUKOS N, SPELIOTIS T, DIMOTIKALI D, YU J. TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide[J]. Appl Catal B: Environ,2016,180:637−647. doi: 10.1016/j.apcatb.2015.07.009
    [11] ATOUT H, ÁLVAREZ M G, CHEBLI D, BOUGUETTOUCHA A, TICHIT D, LLORCA J, MEDINA F. Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods[J]. Mater Res Bull,2017,95:578−587. doi: 10.1016/j.materresbull.2017.08.029
    [12] ZHAO D, SHENG G, CHEN C, WANG X. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure[J]. Appl Catal B: Environ,2012,111−112:303−308. doi: 10.1016/j.apcatb.2011.10.012
    [13] HU J, LI H, MUHAMMAD S, WU Q, ZHAO Y, JIAO Q. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances[J]. J Solid State Chem,2017,253:113−120. doi: 10.1016/j.jssc.2017.05.034
    [14] WANG J, WANG M, XIONG J-R, LU C-H. Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene[J]. Carbon,2015,95:357−363.
    [15] QI Q, WANG Y-Q, WANG S-S, QI H-N, WEI T, SUN Y-M. Preparation of reduced graphene oxide/TiO2 nanocomposites and their photocatalytic properties[J]. Acta Phys-Chim Sin,2015,31(12):2332−2340. doi: 10.3866/PKU.WHXB201510202
    [16] HUANG X, YIN Z, WU S, QI X, HE Q, ZHANG Q, YAN Q, BOEY F, ZHANG H. Graphene-based materials: Synthesis, characterization, properties, and applications[J]. Small,2011,7(14):1876−1902. doi: 10.1002/smll.201002009
    [17] RAZA W, HAQUE M M, MUNEER M, FLEISCH M, HAKKI A, BaAHNEMANN D. Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped TiO2 hybrid carbon spheres[J]. J Alloys Compd,2015,632:837−844. doi: 10.1016/j.jallcom.2015.01.222
    [18] SUN M, LI W, SUN S, HE J, ZHANG Q, SHI Y. One-step in situ synthesis of graphene–TiO2 nanorod hybrid composites with enhanced photocatalytic activity[J]. Mater Res Bull,2015,61:280−286. doi: 10.1016/j.materresbull.2014.10.040
    [19] FU Y, ZHANG J, LIU H, HISCOX W C, GU Y. Ionic liquid-assisted exfoliation of graphite oxide for simultaneous reduction and functionalization to graphenes with improved properties[J]. J Mater Chem A,2013,1(7):2663−2674. doi: 10.1039/c2ta00353h
    [20] MOON I K, LEE J, RUOFF R S, LEE H. Reduced graphene oxide by chemical graphitization[J]. Nat Commun,2010,1:1−6.
    [21] NGUYEN-PHAN T-D, PHAM V H, SHIN E W, PHAM H-D, KIM S, CHUNG J S, KIM E J, HUR S H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites[J]. Open Chem Eng J,2011,170(1):226−232.
    [22] NUR H. Modification of titanium surface species of titania by attachment of silica nanoparticles[J]. Mater Sci Eng B,2006,133(1/3):49−54. doi: 10.1016/j.mseb.2006.05.003
    [23] PHAM T-T, NGUYEN-HUY C, LEE H-J, NGUYEN-PHAN T-D, SON T H, KIM C-K, SHIN E W. Cu-doped TiO2/reduced graphene oxide thin-film photocatalysts: Effect of Cu content upon methylene blue removal in water[J]. Ceram Int,2015,41(9):11184−11193. doi: 10.1016/j.ceramint.2015.05.068
    [24] YAN X, LI X, LU G, YU L, YAO C. Preparation of La1−xCexNiO3/attapulgite nanocomposite and its photo-selective catalytic reduction for NOx removal[J]. J Chin Chem Soc,2017,45(5):743−748.
    [25] BENSOUICI F, BOUOUDINA M, DAKHEL A A, TALA-IGHIL R, TOUNANE M, IRATNI A, SOUIER T, LIU S, CAI W. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films[J]. Appl Surf Sci,2017,395:110−116. doi: 10.1016/j.apsusc.2016.07.034
    [26] 刘建芝. 改性ZnO的制备及低温脱除NO的研究[D]. 保定: 华北电力大学, 2018.

    LIU Jian-zhi. Preparation of modified ZnO and removal of NO at low temperature[D]. Baoding: North China Electric Power University , 2018.
    [27] WANG D, LI X, CHEN J, TAO X. Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation[J]. Chem Eng J,2012,198−199:547−554. doi: 10.1016/j.cej.2012.04.062
    [28] LIU B, HUANG Y, WEN Y, DU L, ZENG W, SHI Y, ZHANG F, ZHUG, XU X, WANG Y. Highly dispersive {001} facets-exposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst[J]. J Mater Chem,2012,22(15):7484−7491. doi: 10.1039/c2jm16114a
    [29] LEE J S, YOU K H, PARK C B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene[J]. Adv Mater,2012,24(8):1084−1088. doi: 10.1002/adma.201104110
    [30] 周琪. 石墨烯基二氧化钛纳米复合材料的制备与光催化性能研究[D]. 合肥: 合肥工业大学, 2014.

    ZHOU Qi. Preparation and photocatalytic properties of graphene based TiO2 nanocomposites[D]. Hefei: Hefei University of Technology , 2014.
    [31] 杜志辉. 改性TiO2脱硝性能的实验研究[D]. 保定: 华北电力大学, 2017.

    DU Zhi-hui. The experimental research on modification of TiO2 denitration[D]. Baoding: North China Electric Power University , 2017.
    [32] LIU S, YU J, JARONIEC M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications[J]. Chem Mater,2011,23(18):4085−4093. doi: 10.1021/cm200597m
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1696
  • HTML全文浏览量:  113
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-03-31
  • 录用日期:  2022-04-27
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回