留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N掺杂MoP基核壳纳米棒的制备及其电催化析氢性能

孙泉锋 韩乔 杨占旭

孙泉锋, 韩乔, 杨占旭. N掺杂MoP基核壳纳米棒的制备及其电催化析氢性能[J]. 燃料化学学报(中英文), 2022, 50(11): 1437-1448. doi: 10.1016/S1872-5813(22)60026-4
引用本文: 孙泉锋, 韩乔, 杨占旭. N掺杂MoP基核壳纳米棒的制备及其电催化析氢性能[J]. 燃料化学学报(中英文), 2022, 50(11): 1437-1448. doi: 10.1016/S1872-5813(22)60026-4
SUN Quan-feng, HAN Qiao, YANG Zhan-xu. Preparation of N-doped MoP-based core-shell nanorods and their electrocatalytic performance in hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1437-1448. doi: 10.1016/S1872-5813(22)60026-4
Citation: SUN Quan-feng, HAN Qiao, YANG Zhan-xu. Preparation of N-doped MoP-based core-shell nanorods and their electrocatalytic performance in hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1437-1448. doi: 10.1016/S1872-5813(22)60026-4

N掺杂MoP基核壳纳米棒的制备及其电催化析氢性能

doi: 10.1016/S1872-5813(22)60026-4
基金项目: 国家自然科学基金(21671092),辽宁省“兴辽英才”创新领军人才项目(XLYC1802057)和辽宁省-沈阳材料科学国家研究中心联合研发基金(2019010280-JH3/301)资助
详细信息
    通讯作者:

    Tel: 13841322030,E-mail: zhanxuy@126.com

  • 中图分类号: O646

Preparation of N-doped MoP-based core-shell nanorods and their electrocatalytic performance in hydrogen evolution

Funds: The project was supported by the National Natural Science Foundation of China (21671092), Liaoning Province "Xing Liao Talents" Innovation Leading Talent Project (XLYC1802057) and Liaoning Province-Shenyang National Research Center for Materials Science Joint R&D Fund Project (2019010280-JH3/301).
  • 摘要: 通过气-固反应方式对三氧化钼-乙二胺有机无机杂化材料(MoO3/EDA)进行原位磷化,利用空间限域效应合成了N掺杂的MoP基核壳纳米棒(N-MoP/NC-8)电化学析氢催化剂。表征结果显示,N-MoP/NC-8由N掺杂碳层包覆的N掺杂钼(MoP)组成,引入的电负性原子调节了活性相电子结构,同时碳层与MoP之间的复合限制了MoP内部团聚,产生较大的孔体积和比表面积,在双重调控下N-MoP/NC-8催化剂表现出较好的析氢性能(在0.5 mol/L H2SO4溶液中,10 mA/cm2电流密度下的过电位为92 mV,Tafel斜率为68 mV/dec),且稳定性超过20 h。
  • FIG. 1985.  FIG. 1985.

    FIG. 1985.  FIG. 1985.

    图  1  N-MoP/NC-8的合成示意图

    Figure  1  Synthesis process of N-MoP/NC-8

    图  2  (a) MoO3,(b) MoO3/EDA,(c) N-MoP/NC-8,(d) N-MoP/NC-7,(e) N-MoP/NC-9,(f) N-MoP/NC-750,(g) N-MoP/NC-850和 (h) MoP-8的XRD谱图

    Figure  2  XRD patterns of (a) MoO3, (b) MoO3/EDA, (c) N-MoP/NC-8, (d) N-MoP/NC-7, (e) N-MoP/NC-9, (f) N-MoP/NC-750, (g) N-MoP/NC-850 and (h) MoP-8

    图  3  ((a)、(b)) MoO3,(c) MoO3/EDA,(d) N-MoP/NC-7,(e) N-MoP/NC-8,(f) N-MoP/NC-9,(g) N-MoP/NC-750,(h) N-MoP/NC-850和 (i) MoP-8的SEM照片;(j) MoP -8和 (k) N-MoP/NC-8的TEM照片;(l) N-MoP/NC-8的高分辨TEM照片;(m) N-MoP/NC-8的元素EDX mapping分布;N-MoP/NC-8和MoP-8的 (n) N2吸附-脱附曲线和 (o) 孔径分布

    Figure  3  SEM images of ((a), (b)) MoO3, (c) MoO3/EDA, (d) N-MoP/NC-7, (e) N-MoP/NC-8, (f) N-MoP/NC-9, (g) N-MoP/NC-750, (h) N-MoP/NC-850 and (i) MoP-8; TEM images of (j) N-MoP/NC-8 and (k) MoP-8; HRTEM image of N-MoP/NC-8 (l); Elements EDX mapping of N-MoP/NC-8 (m); N2 adsorption desorption plots (n) and pore size distribution (o) of N-MoP/NC-8 and MoP-8

    图  4  (a) N-MoP/NC-8和 (b) MoP-8的拉曼光谱谱图

    Figure  4  Raman spectra of (a) N-MoP/NC-8 and (b) MoP-8

    图  5  N-MoP/NC-8的 (a) Mo、(b) P、(c) C、(d) N元素和MoP-8的 (a) Mo、(b) P元素的XPS光谱谱图

    Figure  5  Mo (a), P (b), C (c) and N (d) XPS spectra of N-MoP/NC-8 and MoP-8

    图  6  不同原料比的MoP和Pt/C的 (a) LSV极化曲线,(b) Tafel斜率曲线,(c) EIS曲线

    Figure  6  LSV polarization curves (a), Tafel slope curves (b), and EIS curves (c) of MoP materials synthesized with different raw material proportions

    图  7  不同焙烧温度下MoP和Pt/C的 (a) LSV极化曲线,(b) Tafel斜率曲线,(c) EIS曲线

    Figure  7  LSV polarization curves (a), Tafel slope curves (b), and EIS curves (c) of the MoP materials obtained under different calcination temperatures

    图  8  ((a)–(f)) 不同合成条件的MoP在20–100 mV/s扫描速率下的CV曲线和电容电流曲线

    Figure  8  CV curves at a scanning rate of 20–100 mV/s and capacitive current curves ((a)–(f)) of the MoP materials obtained under different conditions

    图  9  (a) N-MoP/NC-8和MoP-8的1000圈CV循环前后的LSV极化曲线和计时电位(CP)曲线;((b)、(c)) N-MoP/NC-8和((d)、(e)) MoP-8在CP测试前后的TEM照片;(f) N-MoP/NC-8和 (g) MoP-8在CP测试后的Mo、P元素的XPS光谱谱图

    Figure  9  LSV polarization curves (a) before and after 1000 cycles of CV and time-dependent potential (CP) curves of N-MoP/NC-8 and MoP-8; TEM images of N-MoP/NC-8 ((b), (c)) and MoP-8 ((d), (e)) before and after CP; Mo and P XPS spectra of (f) N-MoP/NC-8 and (g) MoP-8 after CP

    表  1  N-MoP/NC-8和MoP-8的比表面积、孔体积和平均孔径

    Table  1  Surface area, pore volume and average pore diameter of N-MoP/NC-8 and MoP-8

    CatalystSurface area/(m2·g−1)Pore volume/(cm3·g−1)Pore diameter/nm
    N-MoP/NC-8117.300.1867.9
    MoP-860.240.0645.5
    下载: 导出CSV

    表  2  N-MoP/NC-8和MoP-8的D峰和G峰

    Table  2  D-peak and G-peak of N-MoP/NC-8 and MoP-8

    CatalystD/cm−1G/cm−1ID/IG
    N-MoP/NC-813581584≈0.9
    MoP-8
    下载: 导出CSV

    表  3  N-MoP/NC-8和MoP-8的Mo、P组分含量以及结合能差值的XPS光谱数据

    Table  3  Data derived from XPS spectra of N-MoP/NC-8 and MoP-8

    CatalystBinding energy/eVElements of catalyst
    Moδ+ 3d5/2Moδ+ 3d3/2Pδ+ 3d3/2Pδ+ 3d1/2Mo/%P/%
    N-MoP/NC-8228.6231.7129.8130.610.4915.18
    MoP-8228.2231.4129.6130.412.1910.17
    Difference0.40.30.20.2
    下载: 导出CSV

    表  4  不同合成条件的MoP和Pt/C的电化学性能

    Table  4  Electrochemical performance of the MoP materials obtained under different synthesis conditions

    Catalystη10/mVTafel slope/
    (mV·dec−1)
    Impedance/
    Ω
    Cdl/
    (mF·cm−2)
    N-MoP/NC-89268226
    N-MoP/NC-7112712.418
    N-MoP/NC-9111862.619
    N-MoP/NC-750127772.512
    N-MoP/NC-850128722.512
    MoP-822611544
    Pt/C31371
    下载: 导出CSV

    表  5  不同MoP基复合材料的电化学性能

    Table  5  Electrochemical performance of different MoP-based composites

    Catalystη10/mVTafel slope/(mV·dec−1)Impedance/ΩRef.
    N-MoP/NC-8 92 68 2 this work
    MoP-8 226 115 4 this work
    MoP/MoS2/MoO2 135 67 ~150 [11]
    MoP 200 66 ~15 [39]
    MoP/NC 183 57 ~10 [39]
    MoP/Co2P/CFP 140 80 13 [43]
    MoP 120 52 [44]
    S-MoP 91 [44]
    NiMoP/C 158 111 5 [45]
    MoP/NPG 148 49 13 [46]
    MoP/NCNT-NGR 100 44 10 [47]
    N/C/MoP 169 51 [48]
    MoP@NPSC 71 75 2 [49]
    Mo2C-MoP NPC/CFP-800 85 66 [50]
    MoP NA/CC 124 58 66 [51]
    MoP/N, P-CNTs 116 [52]
    下载: 导出CSV
  • [1] HASAN A, DINCER I. Comparative assessment of various gasification fuels with waste tires for hydrogen production[J]. Int J Hydrog Energy,2020,44(34):18818−18826.
    [2] HOSSEINI S E, WAHID M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[J]. Renewable Sustainable Energy Rev,2016,57:850−866. doi: 10.1016/j.rser.2015.12.112
    [3] TURNER J A. Sustainable hydrogen production[J]. Science,2004,305(5686):972−974. doi: 10.1126/science.1103197
    [4] MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nat Commun,2020,11(1):1550. doi: 10.1038/s41467-020-15355-0
    [5] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334(6058):928−935. doi: 10.1126/science.1212741
    [6] SARAWUTANUKULAB S, PHATTHARASUPAKUNAB N, SAWANGPHRUK M. 3D CVD graphene oxide-coated Ni foam as carbo-and electro-catalyst towards hydrogen evolution reaction in acidic solution: In situ electrochemical gas chromatography[J]. Carbon,2019,151:109−119. doi: 10.1016/j.carbon.2019.05.058
    [7] SONG H Q, LI Y H, SHANG L, TANG Z Y, ZHANG T R, LU S Y. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium[J]. Nano Energy,2020,72:104730. doi: 10.1016/j.nanoen.2020.104730
    [8] KUMAR R, AHMED Z, KAUR H, BERA C, BAGCHI V. Probing into the effect of heterojunctions between Cu/Mo2C/Mo2N on HER performance[J]. Catal Sci Technol,2020,10:2213−2220. doi: 10.1039/C9CY02526J
    [9] HOU X B, MENSAH A, ZHAO M, CAI Y B, WEI Q F. Facile controlled synthesis of monodispersed MoO3-MoS2 hybrid nanospheres for efficient hydrogen evolution reaction[J]. Appl Surface Sci,2020,529:147115. doi: 10.1016/j.apsusc.2020.147115
    [10] FENG Z C, LIANG C H, WU W C, VAN SANTEN R A, LI C. Carbon monoxide adsorption on molybdenum phosphides: Fourier transform infrared spectroscopic and density functional theory studies[J]. J Phys Chem B,2003,107(49):13698−13702. doi: 10.1021/jp035351p
    [11] HUANG L C, YANG Y, C ZHANG X, YU H, WANG T T, DONG X T, LI D, LIU Z L. Nanostructured MoO2/MoS2/MoP heterojunction electrocatalyst for hydrogen evolution reaction[J]. Nanotechnol,2020,31(22):225403. doi: 10.1088/1361-6528/ab767a
    [12] SHI Y M, ZHANG B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction[J]. Chem Soc Rev,2016,45:1529−1541. doi: 10.1039/C5CS00434A
    [13] XIAO W Y, LI X, FU C C, ZHAO X W, CHENG Y H, ZHANG J Y. Morphology and distribution of in-situ grown MoP nanoparticles on carbon nanotubes to enhance hydrogen evolution reaction[J]. J Alloys Compd,2021,877(5):160214.
    [14] YANG J, ZHANG F J, WANG X, HE D S, WU G, YANG Q H, HONG X, WU Y, LI Y D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution[J]. Angew Chem Int Ed,2016,128(41):13046−13050. doi: 10.1002/ange.201604315
    [15] ZHU J, HU L S, ZHAO P X, LEE L Y S, WONG K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem Rev,2020,120(2):851−918. doi: 10.1021/acs.chemrev.9b00248
    [16] ANJUM M A R, LEE J S. Sulfur and nitrogen dual-doped molybdenum phosphide nanocrystallites as an active and stable hydrogen evolution reaction electrocatalyst in acidic and alkaline media[J]. ACS Catal,2017,7(4):3030−3038. doi: 10.1021/acscatal.7b00555
    [17] SUN A K, SHEN Y L, WU Z Z, WANG D Z. N-doped MoP nanoparticles for improved hydrogen evolution[J]. Int J Hydrog Energy,2017,42(21):14566−14571. doi: 10.1016/j.ijhydene.2017.04.122
    [18] PI C R, HUANG C, YANG Y X, SONG H, ZHANG X M, ZHENG Y, GAO B, FU J J, CHU P K, HUO K F. In situ formation of N-doped carbon-coated porous MoP nanowires: A highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range[J]. Appl Catal B: Environ,2020,263:118358. doi: 10.1016/j.apcatb.2019.118358
    [19] INGHAM B, CHONG S V, TALLON J L. Layered tungsten oxide-based organic-inorganic hybrid materials:   An infrared and Raman study[J]. J Phys Chem B,2005,109(11):4936−4940. doi: 10.1021/jp045066l
    [20] XU J, LIAO Z H, ZHANG J B, GAO B, CHU P K, HUO K F. Heterogeneous phosphorus-doped WO3-x/nitrogen-doped carbon nanowires with high-rate and long-life for advanced lithium-ion capacitors[J]. J Mater Chem A,2018,6:6916−6921. doi: 10.1039/C8TA00639C
    [21] GAO Q S, CHEN P, ZHANG Y H, Tang Y. Synthesis and characterization of organic-inorganic hybrid GeOx/ethylenediamine nanowires[J]. Adv Mater,2008,20(10):1837−1842. doi: 10.1002/adma.200701646
    [22] YAMAMOTO Y, SEIGO G. Friction and wear characteristics of molybdenum dithiocarbamate and molybdenum dithiophosphate[J]. Tribol T,1989,32(2):251−257. doi: 10.1080/10402008908981886
    [23] MENG F L, QI T Y, ZHANG J J, ZHU H M, YUAN Z Y, LIU C Y, QIN W B, DING M N. MoS2-templated porous hollow MoO3 microspheres for highly selective ammonia sensing via a Lewis acid-base interaction[J]. IEEE Trans Ind Electron,2021,69(1):960−970.
    [24] LI W, XIA F, QU J, LI P, CHEN D H, CHEN Z, YU Y, LU Y, CARUSO R A, SONG W G. Versatile inorganic-organic hybrid WOx-ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis[J]. Nano Res,2014,7(6):903−916. doi: 10.1007/s12274-014-0452-9
    [25] SHEN Y H, JIANG Y L, YANG Z Z, DONG J, YANG W, AN Q Y, MAI L Q. Electronic structure modulation in MoO2/MoP heterostructure to induce fast electronic/ionic diffusion kinetics for lithium storage[J]. Adv Sci,2022,9(6):2104504. doi: 10.1002/advs.202104504
    [26] XING Z C, LIU Q, ASIRI A M, SUN X P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water[J]. Adv Mater,2014,26(32):5702−5707. doi: 10.1002/adma.201401692
    [27] PU Z H, AMIINU I S, LIU X B, WANG M, MU S C. Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation[J]. Nanoscale,2016,8:17256−17261. doi: 10.1039/C6NR05564H
    [28] BOKOBZA L, BRUNEEL J L, COUZI M. Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites[J]. C,2015,1(1):77−94.
    [29] LIU B C, LI H, CAO B, JIANG J N, GAO R, ZHANG J. Few layered N, P Dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: An ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range[J]. Adv Funct Mater,2018,28(30):1801527. doi: 10.1002/adfm.201801527
    [30] XIAO P, ALAMSK M, THIA L, GE X M, JERNLIM R, WANG J Y, HWALIM K, WANG X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Energy Environ Sci,2014,7(8):2624−2629. doi: 10.1039/C4EE00957F
    [31] HUANG C, PI C R, ZHANG X M, DING K, QIN P, FU J J, PENG X, GAO B, CHU P K, HUO K F. In situ synthesis of MoP Nanoflakes intercalated N-doped graphene nanobelts from MoO3-amine hybrid for high-efficient hydrogen evolution reaction[J]. Small,2018,14(25):1800667. doi: 10.1002/smll.201800667
    [32] CHEN N N, MO Q J, HE L Q, HUANG X Q, YANG L C, ZENG Z C, GAO Q S. Heterostructured MoC-MoP/N-doped carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction[J]. Electrochim Acta,2019,299:708−716. doi: 10.1016/j.electacta.2019.01.054
    [33] CHEN N N, ZHANG W B, ZENG J C, HE L Q, LI D, GAO Q S. Plasma-engineered MoP with nitrogen doping: Electron localization toward efficient alkaline hydrogen evolution[J]. Appl Catal B: Environ,2020,265(5):118441.
    [34] DENG C, XIE J Z, XUE Y F, HE M, WEI X T, YAN Y M. Synthesis of MoP decorated carbon cloth as a binder-free electrod for hydrogen evolution[J]. RSC Adv,2016,6(73):68568−68573. doi: 10.1039/C6RA12456A
    [35] SUN J, ZHENG G Y, LEE H-W, LIU N, WANG H T, YAO H B, YANG W S, CUI Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes[J]. Nano Lett,2014,14(8):4573−4580. doi: 10.1021/nl501617j
    [36] WU J J, LIU M J, SHARMA P P, YADAV R M, MA L L, YANG Y C, ZOU X L, ZHOU X-D, VAJTAI R, YAKOBSON B I, LOU J, AJAYAN P M. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam[J]. Nano Lett,2016,16(1):466−470. doi: 10.1021/acs.nanolett.5b04123
    [37] SONG J X, YU Z X, GORDIN M L, HU S, YI R, TANG D H, WALTER T, REGULA M, CHOI D, LI X L, MANIVANNAN A, WANG D H. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries[J]. Nano Lett,2014,14(11):6329−6335. doi: 10.1021/nl502759z
    [38] CHAI L Y, YUAN W Y, CUI X, JIANG H Y, TANG J W, GUO X H. Surface engineering-modulated porous N-doped rod-like molybdenum phosphide catalysts: Towards high activity and stability for hydrogen evolution reaction over a wide pH range[J]. RSC Adv,2018,8:26871−26879. doi: 10.1039/C8RA03909G
    [39] LIN M T, LU R H, LUO W, XU N, ZHAO Y, MAI L Q. Active site identification and interfacial design of a MoP/N-doped carbon catalyst for efficient hydrogen evolution reaction[J]. ACS Appl Energy Mater,2021,4(6):5486−5492. doi: 10.1021/acsaem.1c00121
    [40] TANG C, GAN L F, ZHANG R, LU W B, JIANG X, ASIRI A M, SUN X P, WANG J, CHEN L. Ternary FexCo1−xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight[J]. Nano Lett,2016,16(10):6617−6621. doi: 10.1021/acs.nanolett.6b03332
    [41] TIAN H, CUI X Z, ZENG L M, SU L, SONG Y L, SHI J L. Oxygen vacancy-assisted hydrogen evolution reaction of Pt/WO3 electrocatalyst[J]. J Mater Chem A,2019,7:6285−6293. doi: 10.1039/C8TA12219A
    [42] ZHANG Y X, YAN J Q, REN X P, PANG L Q, CHEN H, LIU S Z. 2D WS2 nanosheet supported Pt nanoparticles for enhanced hydrogen evolution reaction[J]. Int J Hydrog Energy,2017,42(8):5472−5477. doi: 10.1016/j.ijhydene.2016.08.225
    [43] ZHOU P P, ZHANG Y Q, YE B, QIN S, ZHANG R R, CHEN T Y, XU H Z, ZHENG L, YANG Q H. MoP/Co2P hybrid nanostructure anchored on carbon fiber paper as an effective electrocatalyst for hydrogen evolution[J]. ChemCatChem,2019,11(24):6086−6091. doi: 10.1002/cctc.201900948
    [44] HUANG Y, SONG X N, DENG J, ZHA C Y, HUANG W J, WU Y L, LI Y G. Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis[J]. Appl Catal B: Environ,2019,245:656−661. doi: 10.1016/j.apcatb.2019.01.034
    [45] 宋楗, 韩乔, 杨占旭. NiMoP/C复合材料的制备及其电催化析氢性能[J]. 石油化工高等学校学报,2022,35(1):1−9. doi: 10.3969/j.issn.1006-396X.2022.01.001

    SONG Jian, HAN Qiao, YANG Zhan-xu. Preparation of NiMoP/C composites and their electrocatalytic performance in hydrogen evolution[J]. J Petrochem Univ,2022,35(1):1−9. doi: 10.3969/j.issn.1006-396X.2022.01.001
    [46] GE R Y, HUO J J, LIAO T, LIU Y, ZHU M Y, LI Y, ZHANG J J, LI W X. Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction[J]. Appl Catal B: Environ,2020,260:118196. doi: 10.1016/j.apcatb.2019.118196
    [47] LEE M H, YOUN D H, LEE J S. Nanostructured molybdenum phosphide/N-doped carbon nanotube-graphene composites as efficient electrocatalysts for hydrogen evolution reaction[J]. Appl Catal A: Gen,2020,594(25):117451.
    [48] WANG C, LI W, WANG X D, YU N, SUN H X, GENG B Y. Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction[J]. Nano Res,2021,15:1824−1830.
    [49] JIAO Y Q, YAN H J, WANG R H, WANG X W, ZHANG X M, WU A P, TIAN C G, JIANG B J, FU H G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst[J]. ACS Appl Mater Interfaces,2020,12(44):49596−49606. doi: 10.1021/acsami.0c13533
    [50] LIU T T, LIU H, WU X J, NIU Y L, FENG B M, LI W, HU W H, LI C M. Molybdenum carbide/phosphide hybrid nanoparticles embedded P, N co-doped carbon nanofibers for highly efficient hydrogen production in acidic, alkaline solution and seawater[J]. Electrochim Acta,2018,28(10):710−716.
    [51] PU Z H, WEI S Y, CHEN Z B, MU S C. Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range[J]. Appl Catal B: Environ,2016,196(5):193−198.
    [52] ZHAO Y, WANG S, LI C Y, YU X B, ZHU C L, ZHANG X T, CHEN Y J. Nanostructured molybdenum phosphide/N, P dual-doped carbon nanotube composite as electrocatalysts for hydrogen evolution[J]. RSC Adv,2016,6:7370−7377. doi: 10.1039/C5RA24773J
  • 2022-D015_2022-DO15支撑材料_燃料化学学报(1).docx
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  454
  • HTML全文浏览量:  87
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 修回日期:  2022-04-20
  • 录用日期:  2022-04-22
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回