留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigate of the optimum process conditions for Co/HZSM-5 catalyzed propane dehydrogenation by a response surface method

QIU Xin-ling CHAI Rui-dong ZHONG Fu DI Xiu-ling LU Jiang-yin

仇新玲, 柴瑞栋, 仲富, 底秀玲, 陆江银. 响应面法研究非贵金属Co基催化剂于丙烷脱氢制丙烯的最佳工艺条件[J]. 燃料化学学报(中英文), 2022, 50(11): 1498-1510. doi: 10.1016/S1872-5813(22)60027-6
引用本文: 仇新玲, 柴瑞栋, 仲富, 底秀玲, 陆江银. 响应面法研究非贵金属Co基催化剂于丙烷脱氢制丙烯的最佳工艺条件[J]. 燃料化学学报(中英文), 2022, 50(11): 1498-1510. doi: 10.1016/S1872-5813(22)60027-6
QIU Xin-ling, CHAI Rui-dong, ZHONG Fu, DI Xiu-ling, LU Jiang-yin. Investigate of the optimum process conditions for Co/HZSM-5 catalyzed propane dehydrogenation by a response surface method[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1498-1510. doi: 10.1016/S1872-5813(22)60027-6
Citation: QIU Xin-ling, CHAI Rui-dong, ZHONG Fu, DI Xiu-ling, LU Jiang-yin. Investigate of the optimum process conditions for Co/HZSM-5 catalyzed propane dehydrogenation by a response surface method[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1498-1510. doi: 10.1016/S1872-5813(22)60027-6

响应面法研究非贵金属Co基催化剂于丙烷脱氢制丙烯的最佳工艺条件

doi: 10.1016/S1872-5813(22)60027-6
详细信息
  • 中图分类号: TE64

Investigate of the optimum process conditions for Co/HZSM-5 catalyzed propane dehydrogenation by a response surface method

Funds: The project was supported by the National Natural Science Foundation of China (21968034).
More Information
  • 摘要: 采用浸渍法制备Co/HZSM-5催化剂用于丙烷催化脱氢制丙烯反应,对其进行预处理,使反应可在低温下进行,然后采用响应曲面考察工艺条件对该反应的影响。利用XRD、SEM、NH3-TPD、H2-TPR、氮气物理吸附-脱附等手段对催化剂进行表征,并在固定床反应器上对催化剂性能进行评价。结合实际实验条件可得最佳工艺条件为:反应温度461 ℃、Co负载量2.4%、GHSV为4300 h−1;此时,丙烯收率为27.7%,对应的丙烯选择性93.8%。
  • FIG. 1991.  FIG. 1991.

    FIG. 1991.  FIG. 1991.

    Figure  1  Schematic illustration of catalyst performance evaluation for propane dehydrogenation

    1: Pressure reducing valves; 2: Flow meters; 3: Stop valves; 4: Mixer; 5: Quartz reactor; 6: Resistance furnaces; 7: Temperature controllers; 8: Catalyst bed; 9: Gas chromatography model SP-3420A; 10: Online analysis computers

    Figure  2  XRD patterns of HZSM-5 and samples with different Co loadings before and after alkali treatment

    Figure  3  SEM images of molecular sieve before and after alkali treatment

    (a): HA (5k times); (b): HA (10k times); (c): HA (50k times); (d): HZ (5k times); (e): HZ (10k times); (f): HZ (50k times)

    Figure  4  H2-TPR spectra of HZ-x catalyst

    Figure  5  XPS profiles of HZ-2.5 catalyst before and after reduction

    Figure  6  NH3-TPD patterns of HA and HZ-x catalysts

    Figure  7  N2 adsorption-desorption isotherm of HA and HZ-x catalyst

    Figure  8  Contour map and response surface plotted on reaction temperature and GHSV

    Figure  9  Contour map and response surface plotted on reaction temperature and Co loading

    Figure  10  Contour map and response surface plotted on GHSV and Co loading

    Table  2  Influence of reaction temperature on propane dehydrogenation performance

    Reaction temperature/°CSelectivity /%Propane conversion /%Propylene yield /%
    CH4C2H6C2H4C3H6
    3506.1840.7628.77284.2828.5667.220
    4005.9780.5558.32585.14214.41512.273
    4502.2430.3017.56589.89124.82122.312
    5004.1710.4568.01187.36221.73618.989
    55018.2752.64222.37656.70719.83311.247
    GHSV=4500 h−1, Co loading= 2.0%
    下载: 导出CSV

    Table  1  Pore structure properties of HA and HZ-x catalysts

    CatalystSSA/(m2·g−1)SSAmicro/(m2·g−1)Dp/nmPore volume /(cm3·g−1)
    VmicroVextVtotal
    HA260.372215.3393.9770.12000.06130.1813
    HZ-0266.881218.7084.9970.12070.06750.1882
    HZ-1.0163.96057.7196.3580.02490.19300.2179
    HZ-1.5182.639105.0095.3890.05140.12310.1745
    HZ-2.0195.88160.8814.7800.00960.21420.2238
    HZ-2.5192.71741.6435.5670.02030.23950.2598
    HZ-3.0175.15740.8275.6640.01990.22070.2406
    下载: 导出CSV

    Table  3  Influence of GHSV on propane dehydrogenation performance

    GHSV/h−1Selectivity /%Propane conversion /%Propylene yield /%
    CH4C2H6C2H4C3H6
    15008.3240.70312.30678.66713.31610.475
    30007.8650.67910.11381.34317.41114.163
    45002.2430.3017.56589.89124.82122.312
    60002.1980.2927.47790.03319.72517.759
    75002.0360.2286.93990.79710.7249.737
    450 °C, Co loading= 2.0%
    下载: 导出CSV

    Table  4  Influence of Co loading on propane dehydrogenation performance

    Co loading/%Selectivity /%Propane conversion /%Propylene yield /%
    CH4C2H6C2H4C3H6
    1.011.0391.01417.55970.38812.6548.907
    1.59.7590.76216.42673.05314.95310.924
    2.02.2430.3017.56589.89124.82122.312
    2.51.4380.1205.42793.01526.53224.679
    3.02.2020.2697.51390.01623.53221.183
    450 °C, GHSV=4500 h−1
    下载: 导出CSV

    Table  5  Experimental design of three factors and three levels of response surface method

    FactorSymbolLevel
    −101
    Reaction temperature /°CA400450500
    GHSV/h−1B300045006000
    Co loading /%C2.02.53.0
    下载: 导出CSV

    Table  6  Box-Behnken response surface experimental design and results

    NumberA/°CB/h−1C/%Yield of propylene (D)/%Actual error/%
    experiment valueactual equation prediction
    140030002.513.7113.511.48
    250030002.526.3126.290.06
    340060002.512.5312.55−0.14
    450060002.515.6615.86−1.30
    540045002.012.2812.37−0.77
    650045002.019.0418.950.49
    740045003.012.4812.57−0.73
    850045003.022.1822.090.42
    945030002.010.4510.56−1.02
    1045060002.013.5113.400.81
    1145030003.014.0714.18−0.77
    1245060003.00.0540.055−1.85
    1345045002.526.9726.581.43
    1445045002.526.2926.58−1.09
    1545045002.527.0626.581.79
    1645045002.527.8826.581.13
    1745045002.526.6726.58−3.54
    下载: 导出CSV

    Table  7  Analysis of variance (ANOVA)

    SourceSum of squaresdfMean squareF-ValueP-ValueSignificance
    Model986.681098.67382.36< 0.0001significant
    A129.531129.53501.96< 0.0001
    B64.93164.93251.63< 0.0001
    C24.19124.1993.75< 0.0001
    AB22.42122.4286.86< 0.0001
    AC2.1612.168.350.0277
    BC72.89172.89282.46< 0.0001
    A26.8516.8526.530.0021
    B2286.431286.431109.96< 0.0001
    C2326.441326.441265.01< 0.0001
    A2C21.72121.7284.16< 0.0001
    Residual1.5560.26
    Lack of fit0.1720.080.240.7977not significant
    Pure error1.3840.35
    Cor total988.2316
    R2=0.9984CV(%)=2.83
    下载: 导出CSV

    Table  8  Experimental and predicted values of optimal process parameters

    NumberExperimental conditionsExperiment value/%Actual equation prediction/%Actual error/%
    temperature/°CGHSV/h−1Co loading/%
    146143002.427.71927.6660.19
    246143002.427.59827.666−0.25
    346143002.427.68927.6660.08
    下载: 导出CSV
  • [1] SPEIGHT J. G. Ullmann's encyclopedia of industrial chemistry[J]. Petrol Sci Technol,1999,17(3/4):445−445. doi: 10.1080/10916469908949727
    [2] ZHAO D, YUAN M, ZHANG Y, JIANG G, SUN H. Incorporation of Cr in ZSM-5 zeolite framework as bifunctional catalysts for n-butane catalytic cracking[J]. CIESC J,2016,67(08):3400−3407.
    [3] XU Z, YUE Y, BAO X, XIE Z, ZHU H. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework[J]. ACS Catal,2020,10:818−828. doi: 10.1021/acscatal.9b03527
    [4] FRICKE C, RAJBANSHI B, WALKER E A, TEREJANU G, HEYDEN A. Propane dehydrogenation on platinum catalysts: Identifying the active sites through Bayesian analysis[J]. ACS Catal,2022,12(4):2487−2498. doi: 10.1021/acscatal.1c04844
    [5] HU Z P, WANG Y, YANG D, YUAN Z Y. CrO supported on high-silica HZSM-5 for propane dehydrogenation[J]. J Energy Chem,2020,47:225−233. doi: 10.1016/j.jechem.2019.12.010
    [6] LIOTTA L F, PANTALEO G, MACALUSO A, CARLO G D, DEGANELLO G. CoOx catalysts supported on alumina and alumina-baria: influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions[J]. Appl Catal A: Gen,2003,245(1):167−177. doi: 10.1016/S0926-860X(02)00652-X
    [7] ZHANG Y, ZHOU Y, SHI J, ZHOU S, SHENG X, ZHANG Z, XIANG S. Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation[J]. J Mol Catal A: Chem,2014,381:138−147. doi: 10.1016/j.molcata.2013.10.007
    [8] DEWANGAN N, ASHOK J, SETHIA M, DAS S, PATI S, KUS H, KAWI S. Cobalt‐Based catalyst supported on different morphologies of alumina for non‐oxidative propane dehydrogenation: Effect of metal support interaction and lewis acidic sites[J]. ChemCatChem,2019,11(19):4923−4934. doi: 10.1002/cctc.201900924
    [9] XU Y, YU W, ZHANG H, XIN J, HE X, LIU B, JIANG F, LIU X. Suppressing C–C bond dissociation for efficient ethane dehydrogenation over the isolated Co(II) sites in SAPO-34[J]. ACS Catal,2021,13001−13019.
    [10] LEI, LIU, QING-FANG, DENG, BAO, AGULA, XU, ZHAO, TIE-ZHEN, REN. Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene[J]. Chem Commun,2011,47(29):8334−8336. doi: 10.1039/c1cc12806j
    [11] LIU L, DENG Q F, BAO A, REN T Z, LIU Y P, BAO Z, YUAN Z Y. Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene[J]. Catal Today,2012,186(1):35−41. doi: 10.1016/j.cattod.2011.08.022
    [12] LIU L, DENG Q F, LIU Y P, REN T Z, YUAN Z Y. HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene[J]. Catal Commun,2011,16(1):81−85. doi: 10.1016/j.catcom.2011.09.005
    [13] CAO T, DAI X, LI F, LIU W, BAI Y, FU Y, QI W. Efficient non-precious metal catalyst for propane dehydrogenation: Atomically dispersed cobalt-nitrogen compounds on carbon nanotubes[J]. ChemCatChem,2021,13(13):3067−3073. doi: 10.1002/cctc.202100410
    [14] WANG Q, XU W, MA Z, YU F, CHEN Y, LIAO H, WANG X, ZHOU J. Highly effective direct dehydrogenation of propane to propylene by microwave catalysis at low temperature over Co-Sn/NC microwave catalyst[J]. ChemCatChem,2020,13(3):1009−1022.
    [15] ZHANG Y, ZHOU Y, QIU A, YU W, YI X, WU P. Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter[J]. Catal Commun,2006,7(11):860−866. doi: 10.1016/j.catcom.2006.03.016
    [16] ZHANG Y, ZHOU Y, HUANG L, ZHOU S, SHENG X, WANG Q, ZHANG C. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chem Eng J,2015,270:352−361. doi: 10.1016/j.cej.2015.01.008
    [17] GONG J J, LI S C, ZHOU H L, XU B L, FAN Y N. Promotional effect of Nain the supported PtSnNa/SUZ-4 catalysts for propane dehydrogenation[J]. J Fuel Chem Technol,2015,43(7):857−861.
    [18] HUANG C, HAN D, GUAN L, ZHU L, MEI Y, HE D, ZU Y. Bimetallic Ni-Zn site anchored in siliceous zeolite framework for synergistically boosting propane dehydrogenation[J]. Fuel,2022,307:121790. doi: 10.1016/j.fuel.2021.121790
    [19] GUO-HAO X U, JIN-PENG Y U, HUA-SHENG X U, CHUN-CHENG L I, WANG P F. Catalystic performance of HZSM-5 zeolite treated by CH3COONa[J]. J Inorg Mater,2019,34(5):546. doi: 10.15541/jim20180336
    [20] YANG S H, CUI Y D, CHEN X J, TU X. Development of synthesis and surface modification of ZSM-5 zeolite molecular sieves[J]. Adv Fine Fetrochem,2003,(4):47−50.
    [21] TIAN H F, HE H H, LIAO J K, ZHA F, GUO X J, TANG X H. Catalytic performance of different zeolites for propane and CO2 coupling to propylene[J]. J Fuel Chem Technol,2021,49(4):495−503. doi: 10.1016/S1872-5813(21)60029-4
    [22] OKUHARA S T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution[J]. Microporous Mesoporous Mater,2001,43(1):83−89. doi: 10.1016/S1387-1811(00)00349-8
    [23] LAPIDUS A, KRYLOVA A, KAZANSKII V. Hydrocarbon synthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts Part I. Physico-chemical properties of 10% cobalt/alumina and 10% cobalt/silica[J]. Appl Catal,1991,73(1):849−850.
    [24] WANG W J, CHEN Y W. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts[J]. Appl Catal,1991,77(2):223−233. doi: 10.1016/0166-9834(91)80067-7
    [25] ARNOLDY P, FRANKEN M C, SCHEFFER B, MOULIJN J A. Temperature-programmed reduction of CoOMoO3Al2O3 catalysts[J]. J Catal,1985,96(2):381−395. doi: 10.1016/0021-9517(85)90308-2
    [26] MARTÍNEZ A, L PEZ C, M RQUEZ F, DÍAZ I. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: The influence of metal loading, cobalt precursor, and promoters[J]. J Catal,2003,220(2):486−499. doi: 10.1016/S0021-9517(03)00289-6
    [27] HYMAN M P, VOHS J M. Reaction of ethanol on oxidized and metallic cobalt surfaces[J]. Surf Sci,2011,605(3/4):383−389. doi: 10.1016/j.susc.2010.11.005
    [28] SUN Y, WU Y, SHAN H, LI C. Studies on the nature of active cobalt species for the production of methane and propylene in catalytic dehydrogenation of propane[J]. Catal Lett,2015,145(7):1413−1419. doi: 10.1007/s10562-015-1533-4
    [29] SARTIPI S, ALBERTS M, SANTOS V P, NASALEVICH M, GASCON J, KAPTEIJN F. Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer-Tropsch synthesis[J]. ChemCatChem,2014,6(1):142−151. doi: 10.1002/cctc.201300635
    [30] YU S Y, YU G J, LI W, IGLESIA E. Kinetics and reaction pathways for propane dehydrogenation and aromatization on Co/H-ZSM5 and H-ZSM5[J]. J Phys Chem B,2002,106(18):4714−4720. doi: 10.1021/jp013245m
    [31] GAJARDO P, PIROTTE D, DEFOSSE C, GRANGE P, DELMON B. XPS study of the supported phase — SiO2 interaction in Mo/SiO2 and CoMo/SiO2 hydrodesulphurization catalysts in their oxidic precursor form[J]. J Electron Spectrosc,1979,17(2):121−135. doi: 10.1016/0368-2048(79)85033-1
    [32] MU S F, SHANG R J, ZHANG J L, CHEN J G. Pretreating Co/SiO2 to generate highly active Fischer-Tropsch synthesis catalyst with low CH4 selectivity[J]. J Fuel Chem Technol,2021,49(11):1592−1597. doi: 10.1016/S1872-5813(21)60163-9
    [33] TAN B J, KLABUNDE K J, SHERWOOD P M A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica[J]. J Am Chem Soc,1991,113(3):855−861. doi: 10.1021/ja00003a019
    [34] MOSELAGE M, JIE L, ACKERMANN L. Cobalt-catalyzed C−H activation[J]. ACS Catal,2015,6(2):498−525.
    [35] B H B, A G, M S N. Selective propane dehydrogenation with single-site Co-II on SiO2 by a non-redox mechanism[J]. J Catal,2015,322:24−37. doi: 10.1016/j.jcat.2014.10.018
    [36] YANRAO C, MAO T, ZHENG C, UNIVERSITY G. Microwave synthesis technique and properties of octadecylmethyldihydroxyethyl ammonium bromide[J]. CIESC J,2011,62(2):566−573.
    [37] SONG Y Q, FENG Y L, FENG L, KANG C L, ZHOU X L, XU L Y, YU G X. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance[J]. J Mol Catal A: Chem,2009,310(1/2):130−137. doi: 10.1016/j.molcata.2009.06.006
    [38] STRA ‐EIFERT A, WAL L I, HERN NDEZ MEJ A C, WEBER L J, YOSHIDA H, ZEČEVIĆ J, JONG K P, G TTEL R. Bifunctional Co-based catalysts for fischer-tropsch synthesis: Descriptors affecting the product distribution[J]. ChemCatChem,2021,13(11):2726−2742. doi: 10.1002/cctc.202100270
    [39] S C, J X, R Y Y, D W J, P Z X, X Z K. Properties of ultramicroscopic beta zeolites synthesized from mesoporous molecular sieves as silica source and their hydrocracking performance[J]. J Catal,2006,27(003):255−258.
    [40] KHODAKOV A Y, BECHARA R, GRIBOVAL-CONSTANT A. Fischer-Tropsch synthesis over silica supported cobalt catalysts: Mesoporous structure versus cobalt surface density[J]. Appl Catal A: Gen,2003,254(2):273−288. doi: 10.1016/S0926-860X(03)00489-7
    [41] KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal,2002,206(2):230−241. doi: 10.1006/jcat.2001.3496
    [42] LI X, JIA R, LI P, ANG S. Response surface analysis for enzymatic decolorization of Congo red by manganese peroxidase[J]. J Mol Catal B: Enzym,2009,56(1):1−6. doi: 10.1016/j.molcatb.2008.03.013
    [43] HILL W J, HUNTER W G. A review of response surface methodology: A literature survey[J]. Technometrics,1966,8(4):571−590. doi: 10.2307/1266632
    [44] LONG Y F, TAN F X, YANG K D, GE L, LV X Y, WEN Y X. Response surface methodology to optimize the preparation of LiFePO-4/C by low-temperature carbon thermal reduction[J]. J Chem Eng High Schools,2013,(1):125−130.
    [45] JIANG S J, FENG X R, LI X E, JIANG S L. Optimized preparation and characterization of PAC-PDMDAAC hybrid flocculants by response surface methodology[J]. J Chem Eng,2014,(2):731−736.
    [46] M Z Z, L Z H. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology[J]. J Hazard Mater,2009,172(2/3):1388−1393. doi: 10.1016/j.jhazmat.2009.07.146
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  105
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 修回日期:  2022-04-21
  • 录用日期:  2022-04-22
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回