留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/CeO2催化剂的金属-载体界面调控及其低温化学链甲烷干重整性能研究

李睿杰 章菊萍 史健 李孔斋 刘慧利 祝星

李睿杰, 章菊萍, 史健, 李孔斋, 刘慧利, 祝星. Ni/CeO2催化剂的金属-载体界面调控及其低温化学链甲烷干重整性能研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1458-1470. doi: 10.1016/S1872-5813(22)60032-X
引用本文: 李睿杰, 章菊萍, 史健, 李孔斋, 刘慧利, 祝星. Ni/CeO2催化剂的金属-载体界面调控及其低温化学链甲烷干重整性能研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1458-1470. doi: 10.1016/S1872-5813(22)60032-X
LI Rui-jie, ZHANG Ju-ping, SHI Jian, LI Kong-zhai, LIU Hui-li, ZHU Xing. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1458-1470. doi: 10.1016/S1872-5813(22)60032-X
Citation: LI Rui-jie, ZHANG Ju-ping, SHI Jian, LI Kong-zhai, LIU Hui-li, ZHU Xing. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1458-1470. doi: 10.1016/S1872-5813(22)60032-X

Ni/CeO2催化剂的金属-载体界面调控及其低温化学链甲烷干重整性能研究

doi: 10.1016/S1872-5813(22)60032-X
基金项目: 国家自然科学基金(52066007,22279048),云南省重大科技项目( 202202AG050017),云南省基础研究计划项目(202101AT070076)和云南省高层次人才培养支持计划资助
详细信息
    作者简介:

    李睿杰(1998-),男,江苏扬州人,昆明理工大学硕士生

    刘慧利,E-mail:lhlqwer@163.com

    祝星,Email: zhuxing2010@hotmail.com

    通讯作者:

    Tel: +86-13987129614,E-mail: lhlqwer@163.com

    zhuxing2010@hotmail.com

  • 中图分类号: O643;O614

Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane

Funds: The project was supported by the National Natural Science Foundation of China (52066007, 22279048) , Yunnan Major Scientific and Technological Projects (202202AG050017), the Basic Research Program of Yunnan Province (202101AT070076) and the High-level Talents Training Support Program of Yunnan Provinc
  • 摘要: 本研究合成了四种CeO2形貌的Ni/CeO2催化剂(纳米棒、纳米立方体、纳米八面体和纳米多面体),并探讨了催化剂低温化学链甲烷干重整反应的结构依赖性。材料表征表明,Ni物种高度分散在CeO2载体表面,部分Ni离子进入CeO2晶格,从而引起氧空位的增加。化学链干重整性能测试结果表明,棒状结构Ni/CeO2催化剂表现出最高的还原性,具有最多氧空位和最高储氧能力。多面体状Ni/CeO2催化剂的结构为形状不规则的约10.3 nm的CeO2纳米单晶,具有较大的比表面积和较高的还原性,表现出低温甲烷反应活性,在550 ℃低温化学链甲烷干重整中显示最高的氧化还原活性和循环稳定性。本研究为设计高效的金属/CeO2催化剂提供了一种新策略,有望促进铈基催化剂在化学链技术中应用。
  • FIG. 1987.  FIG. 1987.

    FIG. 1987.  FIG. 1987.

    图  1  CeO2水热处理的形貌相图[31]

    Figure  1  Morphological of CeO2 after hydrothermal treatment[31](with permission from Elsevier)

    图  2  (a)CeO2、(b)NiO/CeO2和((c)、(d))Ni/CeO2的XRD谱图

    Figure  2  XRD patterns of (a) CeO2, (b) NiO/CeO2, and ((c), (d)) Ni/CeO2

    图  3  (a)Ni/CeO2-R、(b)Ni/CeO2-C、(c)Ni/CeO2-P的N2吸附-解吸等温线和孔径分布(插图)

    Figure  3  N2 adsorption-desorption isotherms and pore size distribution (inset) of (a) Ni/CeO2-R, (b) Ni/CeO2-C, (c) Ni/CeO2-P

    图  4  新鲜制备的CeO2的SEM、TEM和HRTEM照片

    Figure  4  SEM, TEM and HRTEM images of as-obtained CeO2 ((a), (b), (c)) CeO2-R, ((d), (e), (f)) CeO2-C, ((g), (h), (i)) CeO2-P and ((j), (k), (l)) CeO2-O

    图  5  Ni/CeO2的TEM和HRTEM照片

    Figure  5  TEM and HRTEM images of Ni/CeO2

    ((a), (d)) Ni/CeO2-R, ((b), (e)) Ni/CeO2-C and ((c), (f)) Ni/CeO2-P

    图  6  (a)CeO2样品,(b)Ni/CeO2样品的拉曼光谱谱图

    Figure  6  Raman spectra of (a) CeO2 samples (b) Ni/CeO2 samples

    图  7  CH4的温度程序反应(CH4-TPR)曲线:(a)Ni/CeO2-R,(b)Ni/CeO2-C,(c)Ni/CeO2-P;(d)Ni/CeO2:(e)CH4-TPR过程中生成物形成的起始温度

    Figure  7  Temperature-programmed reaction of CH4 (CH4-TPR) profiles over (a) Ni/CeO2-R, (b) Ni/CeO2-C, (c) Ni/CeO2-P; (d) Ni/CeO2, (e) starting temperature of products formation during the CH4-TPR

    图  8  (a)Ni/CeO2-R、(b)Ni/CeO2-C、(c)Ni/CeO2-P和(d)Ni/CeO2的氧化还原反应产生的气体

    Figure  8  Gases from the second redox reactions over (a) Ni/CeO2-R, (b) Ni/CeO2-C and (c) Ni/CeO2-P和(d)Ni/CeO2

    图  9  (a)在不同的Ni/CeO2氧化还原催化剂上,甲烷氧化步骤中CH4的转化率、CO的选择性和CO2的转化率;(b)甲烷氧化步骤中H2、CO和CO2的产率和CO2分裂步骤中CO的产率。

    Figure  9  (a) CH4 conversion, CO selectivity and CO2 conversion in methane oxidation step over different Ni/CeO2 redox catalyst; (b)Yields of H2, CO and CO2 in methane oxidation step and CO yield in CO2 splitting step

    图  10  用于CLDRM的Ni/CeO2氧化还原催化剂的氧化还原稳定性:(a)在550 ℃下,三种Ni/CeO2氧化还原催化剂在连续氧化还原循环中的CH4转化和CO2转化;(b) 在Ni/CeO2-P氧化还原催化剂上,甲烷氧化步骤中H2、CO和CO2的产率以及CO2分裂步骤中CO的产率

    Figure  10  Redox stability of Ni/CeO2 redox catalysts for CL-DRM (a) CH4 conversion and CO2 conversion in successive redox cycles over three Ni/CeO2 catalyst at 550 ℃; (b) Yield of H2, CO and CO2 in methane oxidation step and CO yield in CO2 splitting step over Ni/CeO2-P catalyst at 550 ℃ for 50 redox cycles

    图  11  反应后Ni/CeO2样品的XRD谱图

    Figure  11  XRD patterns of spent Ni/CeO2 samples

    图  12  Ni/CeO2-P的TEM照片

    Figure  12  TEM images of spent Ni/CeO2-P

    表  1  CeO2纳米结构水热合成条件

    Table  1  Hydrothermal synthesis conditions of CeO2 nanostructures

    Support${{C} }_{ {\rm{NaOH/Na_3PO_4} } }$
    (mol·L−1)
    t/℃t/hStructureShape
    CeO2-R610024cubicrods
    CeO2-C718024cubiccubes
    CeO2-P0.510024cubicparticles
    CeO2-O0.000317010cubicoctahedra
    Note: Synthesized under [Ce3+] = 0.4 mol/L
    下载: 导出CSV

    表  2  Ni/CeO2样品中CeO2的晶格参数(a0)、结晶尺寸和微应变(ε

    Table  2  Lattice parameter (a0), crystalline size, and the microstrain (ε) of ceria in Ni/CeO2 samples

    Sampled(111)-spacing/nmLattice parameter/nmCeO2 crystalline size/nmε/%
    (111)(220)(311)avg.
    Ni/CeO2-R0.311220.54113411.211.211.411.40.084
    Ni/CeO2-C0.311860.541058 > 100 > 100 > 100319.70.020
    Ni/CeO2-P0.312070.54060910.210.510.710.30.027
    Ni/CeO2-O0.310440.53957560.153.951.355.10.058
    下载: 导出CSV

    表  3  煅烧后的Ni/CeO2催化剂的织构性能

    Table  3  Textural properties and redox behaviors of calcined Ni/CeO2 catalysts

    SampleSBET/(m2·g−1)Pore
    volume/(cm3·g−1)
    Average pore
    size/nm
    Ni/CeO2-R57.880.2661.0
    Ni/CeO2-C7.930.0219.2
    Ni/CeO2-P60.910.1747.4
    Ni/CeO2-O12.010.0324.5
    下载: 导出CSV
  • [1] ARAMOUNI NA K, ZEAITER J, KWAPINSKI W, AHMAD, MN. Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation[J]. Energy Conv Manag,2017,150:614−622. doi: 10.1016/j.enconman.2017.08.056
    [2] LARIONOV K B, GROMOV A A. Non-isothermal oxidation of coal with Ce(NO3)3 and Cu(NO3)2 additives[J]. Int J Coal Sci Technol,2019,6(1):37−50. doi: 10.1007/s40789-018-0229-y
    [3] CHEN S, ZAFFRAN J, YANG B. Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation[J]. Appl Catal B: Environ,2020,270:9.
    [4] ZHANG X, ZHANG L, PENG H, YOU X, PENG C. Nickel nanoparticles embedded in mesopores of AlSBA-15 with a perfect peasecod-like structure: A catalyst with superior sintering resistance and hydrothermal stability for methane dry reforming[J]. Appl Catal B: Environ,2018,224:488−499. doi: 10.1016/j.apcatb.2017.11.001
    [5] QING W, Lin C, CHENG W, XIAO X. Enhancing the activity of iron based oxygen carrier via surface controlled preparation for lignite chemical looping combustion[J]. Chem J Chin Univ,2015,36(1):116−123.
    [6] ZENG L, HUANG F, ZHU X, ZHENG M, LI K. Chemical looping of methane over CeO2-based and Co3O4-CeO2 oxygen carriers: Controlling of product selectivity[J]. Chem J Chin Univ,2017,38(1):11.
    [7] ZENG L, LI K, HUANG F, ZHU X, LI H. Effects of Co3Oz` nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity[J]. Chin J Catal, 37(6): 908−922.
    [8] LOFBERG A, KANE T, GUERRERO-CABALLERO J, JALOWIECKI-DUHAME, L. Chemical looping dry reforming of methane: Toward shale-gas and biogas valorization[J]. Chem Eng Process,2017,122:523−529. doi: 10.1016/j.cep.2017.05.003
    [9] ZHU X, GAO Y, WANG X, HARIBAL V, LIU J, NEAL L M. A tailored multi-functional catalyst for ultra-efficient styrene production under a cyclic redox scheme[J]. Nat Commun,2021,12(1):11−25. doi: 10.1038/s41467-020-20162-8
    [10] ZHU X, IMTIAZ Q, DONAT F, MULLER CR, LI F. Chemical looping beyond combustion - a perspective[J]. Energy Environ Sci,2020,13(3):772−804. doi: 10.1039/C9EE03793D
    [11] NANDY A, LOHA C, GU S, SARKAR P, KARMAKAR MK, CHATTRJEE P K. Present status and overview of chemical looping combustion technology[J]. Renewable Sustainable Energy Rev,2016,59:597−619. doi: 10.1016/j.rser.2016.01.003
    [12] ZHU M, SONG Y, CHEN S, LI M, ZHANG L, XIANG W. Chemical looping dry reforming of methane with hydrogen generation on Fe2O3/Al2O3 oxygen carrier[J]. Chem Eng J,2019,368:812−823. doi: 10.1016/j.cej.2019.02.197
    [13] BUELENS L C, GALVITA V V, POELMAN H, DETAVERNIE C, MARIN GB. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle[J]. Science,2016,354(6311):449−452. doi: 10.1126/science.aah7161
    [14] AY H, UNER D. Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts[J]. Appl Catal B: Environ,2015,179:128−138. doi: 10.1016/j.apcatb.2015.05.013
    [15] YANG Z, LEI Z, GE B, XIONG X, JIN Y, JIAO K, CHEN F. Development of catalytic combustion and CO2 capture and conversion technology[J]. Int J Coal Sci Technol,2021,8(3):377−382. doi: 10.1007/s40789-021-00444-2
    [16] CHEN L, BAO J, KONG L, COMBS M, NIKOLIC HS, FAN Z. The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion[J]. Appl Energy,2016,184:9−18. doi: 10.1016/j.apenergy.2016.09.085
    [17] TANG M, XU L, FAN M. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review[J]. Appl Energy,2015,151:143−156. doi: 10.1016/j.apenergy.2015.04.017
    [18] ZHU X, ZHANG M, LI K, WEI Y, ZHENG Y, HU J, WANG H. Chemical-looping water splitting over ceria-modified iron oxide: Performance evolution and element migration during redox cycling[J]. Chem Eng Sci,2018,179:92−103. doi: 10.1016/j.ces.2018.01.015
    [19] HAN Y, TIAN M, WANG C, KANG Y, KANG L, SU Y. Highly active and anticoke Ni/CeO2 with ultralow ni loading in chemical looping dry reforming via the strong metal-support interaction[J]. ACS Sustainable Chem Eng,2021,9(51):17276−17288.
    [20] ZHU X, WEI Y, WANG H. Ce-Fe oxygen carriers for chemical-looping steam methane reforming[J]. Int J Hydrog Energy,2013,38(11):4492−4501. doi: 10.1016/j.ijhydene.2013.01.115
    [21] ZHU X, LI K, WEI Y, WANG H, SUN L. Chemical-looping steam methane reforming over a CeO2–Fe2O3 oxygen carrier: Evolution of its structure and reducibility[J]. Energy Fuels,2014,28(2):754−760. doi: 10.1021/ef402203a
    [22] DOU B, ZHANG H, SONG Y, ZHAO L, JIANG B, HE M, CHEN H. Hydrogen production from the thermochemical conversion of biomass: Issues and challenges[J]. Sustainable Energy Fuels,2019,3(2):314−342. doi: 10.1039/C8SE00535D
    [23] DE DIEGO L F, ORTIZ M, ADANEZ J. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers[J]. Chem Eng J,2008,144(2):289−298. doi: 10.1016/j.cej.2008.06.004
    [24] ZHU X, WANG H, WEI Y, LI K. Hydrogen and syngas production from two-step steam reforming of methane over CeO2-Fe2O3 oxygen carrier[J]. J Rare Earths,2010,28(6):907−913. doi: 10.1016/S1002-0721(09)60225-8
    [25] DING W, ZHAO K, JIANG S, ZHAO Z, CAO Y, HE F. Alkali-metal enhanced LaMnO3 perovskite oxides for chemical looping oxidative dehydrogenation of ethane[J]. Appl Catal A: Gen,2021,609:8−19.
    [26] HUANG J, LIU W, HU W, METCALFE I, YANG Y, LIU B. Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications[J]. Appl Energy,2019,236:635−647. doi: 10.1016/j.apenergy.2018.12.029
    [27] MEJIA C, DEELEN T V, JONG K. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat Catal,2019,2(11):955−970. doi: 10.1038/s41929-019-0364-x
    [28] MAI H, SUN L, ZHANG Y, SI R, FENG W, ZHANG H, LIU H, YAN Ch. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B,2005,109(51):24380−24385. doi: 10.1021/jp055584b
    [29] HE L, REN Y, FU Y, YUE B, TSANG S, HE H. Morphology-dependent catalytic activity of Ru/CeO2 in dry reforming of methane[J]. Molecules,2019,24(3):12−23.
    [30] YAN X, HU T, LIU P, LI S, ZHAO B, ZANG Q, JIAO W. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2[J]. Appl Catal B: Environ,2019,246:221−231. doi: 10.1016/j.apcatb.2019.01.070
    [31] DATTA S, TORRENTE-MURCIANO L. Nanostructured faceted ceria as oxidation catalyst[J]. Curr Opin Chem Eng,2018,20:99−106. doi: 10.1016/j.coche.2018.03.009
    [32] HUANG F, YE D, GUO X, ZHAN W, GUO Y, WANG L, WANG Y. Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N, N-dimethylformamide[J]. Catal Sci Technol,2020,10(8):2473−2483. doi: 10.1039/C9CY02384D
    [33] KIM H J, JANG M G, SHIN D, HAN J W. Design of ceria catalysts for low-temperature CO oxidation[J]. ChemCatChem,2020,12(1):11−26.
    [34] RODRIGUEZ J A, WANG X, LIU G, HANSONA J C, HRBEK J, PEDEN C H F, IGLESIAS-JUEZ A, FERNANDEZ-GARCIA M. Physical and chemical properties of Ce1−xZrxO2 nanoparticles and Ce1−xZrxO2(111) surfaces: synchrotron-based studies[J]. J Mol Catal A: Chem,2005,228(1/2):11−19. doi: 10.1016/j.molcata.2004.09.069
    [35] FUKUHARA C, HAYAKAWA K, SUZUKI Y, KAWASAKI W, WATANABE R. A novel nickel-based structured catalyst for CO2 methanation: A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources[J]. Appl Catal A: Gen,2017,532:12−18. doi: 10.1016/j.apcata.2016.11.036
    [36] HUANG X, SUN H, WANG L, LIU Y, FAN K, CAO Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation[J]. Appl Catal B: Environ,2009,90(1/2):224−232. doi: 10.1016/j.apcatb.2009.03.015
    [37] LI J, TA N, LI Y, SHEN W. Morphology effect of nano-scale CeO2 in heterogeneous catalytic reactions[J]. Chin J Catal,2008,29(9):823−830.
    [38] LIN Y, WU Z, WEN J, POEPPELMEIER K R, MARKS L D. Imaging the atomic surface structures of CeO2 nanoparticles[J]. Nano Lett,2014,14(1):191−196. doi: 10.1021/nl403713b
    [39] CABALLERO A, HOLGADO J P, GONZALEZ-DELACRUZ V M. In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: Hydrogen-induced burial and dig out of metallic nickel[J]. Chem Commun,2010,46(7):1097−1106. doi: 10.1039/B920803H
    [40] LAASSIRI S, ZEINALIPOUR-YAZDI C D, CATLOW C R A. The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping[J]. Appl Catal B: Environ,2018,223:60−69. doi: 10.1016/j.apcatb.2017.04.073
    [41] WEI Y, ZHANG Y, ZHANG P, XIONG J, MEI X, YU Q, ZHAO Z, LIU J. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts[J]. Environ Sci Technol,2020,54(3):2002−2011. doi: 10.1021/acs.est.9b07013
    [42] ZHANG X, YOU R, LI D, CAO T, HUANG W. Reaction sensitivity of ceria morphology effect on Ni/CeO2 catalysis in propane oxidation reactions[J]. ACS Appl Mater Interfaces,2017,9(41):35897−35907. doi: 10.1021/acsami.7b11536
    [43] SHAPOVALOV V, METIU H. Catalysis by doped oxides: CO oxidation by AuxCe1−xO2[J]. J Catal,2007,245(1):205−214. doi: 10.1016/j.jcat.2006.10.009
    [44] ABDULLAH B, GHANI N A A, VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. J Clean Prod,2017,162:170−185. doi: 10.1016/j.jclepro.2017.05.176
    [45] LONG Y, LI K, GU Z, ZHU X, WEI Y, LU C, LIN S, YANG K, CHENG X, TIAN D. Ce-Fe-Zr-O/MgO coated monolithic oxygen carriers for chemical looping reforming of methane to co-produce syngas and H2[J]. Chem Eng J,2020,388:13.
    [46] NAJERA M, SOLUNKE R, GARDNER T, VESER G. Carbon capture and utilization via chemical looping dry reforming[J]. Chem Eng Res Des,2011,89(9):1533−1543. doi: 10.1016/j.cherd.2010.12.017
    [47] CHEIN R, HSU W. Thermodynamic analysis of syngas production via chemical looping dry reforming of methane[J]. Energy,2019,180:535−547. doi: 10.1016/j.energy.2019.05.083
    [48] WANG Y, LIU H, XU B. Durable Ni/MgO catalysts for CO2 reforming of methane: Activity and metal-support interaction[J]. J Mol Catal A: Chem,2009,299(1/2):44−52. doi: 10.1016/j.molcata.2008.09.025
    [49] WU Z, LI M, OVERBURY S H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes[J]. J Catal,2012,285(1):61−73. doi: 10.1016/j.jcat.2011.09.011
    [50] LIU L, YAO Z, DENG Y, Gao F, LIU B, DONG L. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem,2011,3(6):978−989.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  424
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-04-23
  • 录用日期:  2022-04-24
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回