留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废FCC催化剂与高炉灰催化木屑热解特性研究

张玉明 管俊涛 乔沛 李国通 李家州 张炜 刘明华

张玉明, 管俊涛, 乔沛, 李国通, 李家州, 张炜, 刘明华. 废FCC催化剂与高炉灰催化木屑热解特性研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1524-1534. doi: 10.1016/S1872-5813(22)60045-8
引用本文: 张玉明, 管俊涛, 乔沛, 李国通, 李家州, 张炜, 刘明华. 废FCC催化剂与高炉灰催化木屑热解特性研究[J]. 燃料化学学报(中英文), 2022, 50(11): 1524-1534. doi: 10.1016/S1872-5813(22)60045-8
ZHANG Yu-ming, GUAN Jun-tao, QIAO Pei, LI Guo-tong, LI Jia-zhou, ZHANG Wei, LIU Ming-hua. Study on the pyrolysis characteristics of sawdust catalyzed by spent FCC catalyst and blast furnace ash[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1524-1534. doi: 10.1016/S1872-5813(22)60045-8
Citation: ZHANG Yu-ming, GUAN Jun-tao, QIAO Pei, LI Guo-tong, LI Jia-zhou, ZHANG Wei, LIU Ming-hua. Study on the pyrolysis characteristics of sawdust catalyzed by spent FCC catalyst and blast furnace ash[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1524-1534. doi: 10.1016/S1872-5813(22)60045-8

废FCC催化剂与高炉灰催化木屑热解特性研究

doi: 10.1016/S1872-5813(22)60045-8
基金项目: 国家重点研发计划(2018YFE0183600)和中国石油大学(北京)科研基金(2462020YXZZ043, 2462021QNXZ007)资助
详细信息
    通讯作者:

    E-mail: ymzhcup@163.com

    mhliu2000@fzu.edu.cn

  • 中图分类号: TK6

Study on the pyrolysis characteristics of sawdust catalyzed by spent FCC catalyst and blast furnace ash

Funds: The project was supported by the National Key R&D Program of China (2018YFE0183600) and Science Foundation of China University of Petroleum, Beijing (2462020YXZZ043, 2462021QNXZ007).
  • 摘要: 将炼油废FCC催化剂(sFCCc)和炼钢高炉灰(BFA)两种典型工业废弃物作为催化剂应用于木屑快速热解过程中,探究了400−700 ℃木屑的催化热解反应特性。结果表明,两种催化剂均促进了液相产物向气相产物的转化,700 ℃、BFA催化条件下的气相产率最高为52.60%。sFCCc在500−600 ℃时具有更强的脱氧活性,气体产物中CO和CO2产量更高。BFA在600−700 ℃时具有更高的缩聚脱氢活性,催化生成了更大量的多环芳香类化合物和H2。热解油主要由酚类物质组成,sFCCc促进了甲氧基酚向苯二酚类物质转化。热解油FT-IR解析结果表明,sFCCc促进了C−O和C=O的脱除,导致酸类和酯类化合物减少,CO2产率增加。
  • FIG. 1994.  FIG. 1994.

    FIG. 1994.  FIG. 1994.

    图  1  实验装置流程示意图

    Figure  1  Schematic diagram of experimental apparatus

    1: Nitrogen cylinder; 2: Reducing valve; 3: Mass flowmeter; 4: Quartz reactor; 5: Thermocouple; 6: Biomass; 7: Temperature control thermocouple; 8: Furnace; 9: Condenser tube; 10: Erlenmeyer flask; 11: Ice water bath; 12: Acetone bottle washing set; 13: Sleeve filter; 14: Gas cylinder; 15: Graduated cylinder

    图  2  500 ℃下不同比例sFCCc(a)和BFA(b)对木屑热解产物产率的影响

    Figure  2  Influence of different proportions of sFCCc (a) and BFA (b) on product yield at 500 ℃

    图  3  不同温度与催化条件下木屑热解产物产率的变化

    Figure  3  Changes of pyrolysis product yield of sawdust under different temperature and catalytic conditions

    图  4  不同温度与催化条件下气体组分产率变化

    Figure  4  Changes in gas component yield under different temperature and catalytic conditions

    图  6  不同催化条件下热解油品烃类组成

    Figure  6  Hydrocarbon composition under different catalytic conditions at 700 ℃

    (MAH: Monocyclic aromatic hydrocarbons, PAH: Polycyclic aromatic hydrocarbons)

    图  5  温度和催化条件对热解油品组成的影响

    Figure  5  Influence of temperature and catalytic conditions on the composition of pyrolysis oil (a): 500 ℃, 600 ℃ and 700 ℃; (b): 500 ℃+sFCCc/BFA; (c): 600 ℃+ sFCCc /BFA; (d): 700 ℃+ sFCCc /BFA; (e): 700 ℃+ sFCCc /Al2O3; (f): 700 ℃+BFA/Fe2O3

    图  7  木屑热解油傅里叶变换红外光谱谱图

    Figure  7  Fourier transform infrared spectra of sawdust pyrolysis oil

    图  8  木屑油傅里叶红外变换光谱的高斯拟合峰

    Figure  8  Fitting Gaussian peaks of Fourier transform infrared spectrum for sawdust oil

    表  1  杨木屑的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of the poplar sawdust

    Proximate analysis wad/%Ultimate analysis wdaf/%
    AVFCM CHSNO*
    1.5077.7117.902.8946.806.730.140.2346.10
    ad: air-dried basis; daf: dried ash-free basis; *: calculated by difference
    下载: 导出CSV

    表  2  BFA和sFCCc所含主要金属氧化物

    Table  2  Main metal oxides in BFA and SFCCc

    Industrial wasteFe2O3Al2O3SiO2K2OCaONa2OMgO
    BFA/% (mass)60.603.859.734.747.673.332.02
    sFCCc/% (mass)0.5645.5644.200.150.160.260.16
    下载: 导出CSV

    表  3  不同温度和催化条件下主要酚类物质绝对峰面积

    Table  3  Absolute peak area of main phenols under different temperature and catalytic conditions

    NameExperimental condition /Absolute peak area (×106)
    500 ℃500 ℃
    sFCCc
    500 ℃
    BFA
    600 ℃600 ℃
    sFCCc
    600 ℃
    BFA
    700 ℃700 ℃
    sFCCc
    700 ℃
    BFA
    Phenol5.854.316.176.3913.8515.1719.4652.0857.10
    Phenol-methyl, 2-8.755.766.648.4815.1214.9319.0237.4031.77
    Phenol, 3-methyl-NaNaNa11.1625.7919.3827.1632.5348.02
    Phenol, 2,3-dimethyl-4.113.89Na3.7734.0115.896.157.5816.67
    Phenol, 3,5-dimethyl-5.448.78Na11.026.917.7816.2826.3820.55
    Phenol, 2-methoxy-4-methyl-17.867.7825.81NaNaNaNaNaNa
    Phenol, 2,6-dimethoxy-51.9537.3152.34NaNaNaNaNaNa
    Phenol, 2,6-dimethoxy-4-(2-propenyl)-40.2011.7044.94NaNaNaNaNaNa
    Phenol, 2-methoxy-75.7830.4937.77NaNaNaNaNaNa
    1,2-benzenediol15.3650.2446.3642.6454.8356.8544.3017.0335.85
    1,2-benzenediol, 4-methyl-NaNaNa59.8121.1420.418.61Na12.60
    *Na: not available
    下载: 导出CSV

    表  4  红外光谱波段分配[36-39]和拟合峰面积

    Table  4  Band assignments derived from FT-IR spectra[36-39] and fitting peaks area

    Peak positions
    /cm−1
    Half peak
    width/cm−1
    Functional
    groups
    Peak area
    500 ℃600 ℃700 ℃600 ℃-
    sFCCc
    600 ℃-
    BFA
    3444
    3286
    106
    167
    O−H stretching
    vibration band
    48.27 28.87 39.85 48.41 50.00
    2939
    2854
    1461
    1446
    50
    23
    9
    44
    C−H stretching
    and bending
    vibration peaks
    21.02 13.59 8.73 10.41 11.40
    1773
    1718
    27
    30
    C=O vibration
    peaks
    12.04 8.41 5.61 4.93 7.31
    1660
    1607
    1514
    23
    25
    9
    C=C stretching
    vibration peak in
    aromatic rings
    7.97 5.00 5.58 7.28 7.65
    1363
    1325
    1283
    1214
    1154
    1113
    1054
    27
    15
    27
    43
    13
    27
    34
    C−O stretching
    vibration peak
    34.34 25.01 21.60 23.65 30.43
    下载: 导出CSV
  • [1] 国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019.

    National Forestry and Grassland Administration. China Forest Resources Report (2014-2018)[M]. Beijing: China Forestry Press, 2019.
    [2] UZOEJINWA B B, HE X, WANG S, ABOMOHRA A E, HU Y M, WANG Q. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide[J]. Energy Convers Manage,2018,163:468−492. doi: 10.1016/j.enconman.2018.02.004
    [3] 李承宇, 张军, 袁浩然, 王树荣, 陈勇. 纤维素热解转化的研究进展[J]. 燃料化学学报,2021,49(12):1733−1751. doi: 10.1016/S1872-5813(21)60134-2

    LI Cheng-yu, ZHANG Jun, YUAN Hao-ran, WANG Shu-rong, CHEN Yong. Research progress of cellulose pyrolysis conversion[J]. J Fuel Chem Technol,2021,49(12):1733−1751. doi: 10.1016/S1872-5813(21)60134-2
    [4] ARNI S A. Comparison of slow and fast pyrolysis for converting biomass into fuel[J]. Renewable Energ,2018,124:197−201. doi: 10.1016/j.renene.2017.04.060
    [5] HU X, GUNAWAN R, MOURANT D, LIEVENS C, LI X, ZHANG S, CHAIWAT W, LI C Z. Acid-catalysed reactions between methanol and the bio-oil from the fast pyrolysis of mallee bark[J]. Fuel,2012,97:512−522. doi: 10.1016/j.fuel.2012.02.032
    [6] ZHANG X D, SUN L Z, CHEN L, XIE X P, ZHAO B F, SI H Y, MENG G F. Comparison of catalytic upgrading of biomass fast pyrolysis vapors over CaO and Fe (III)/CaO catalysts[J]. J Anal Appl Pyrolysis,2014,108:35−40. doi: 10.1016/j.jaap.2014.05.020
    [7] DAI L L, WANG Y P, LIU Y H, ROGER R, DUAN D L, ZHAO Y F, YU Z T, JIANG L. Catalytic fast pyrolysis of torrefied corn cob to aromatic hydrocarbons over Ni-modified hierarchical ZSM-5 catalyst[J]. Bioresour Technol,2019,272:407−414. doi: 10.1016/j.biortech.2018.10.062
    [8] 方书起, 石崇, 李攀, 白净, 常春. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报,2020,71(4):1637−1645.

    FANG Shu-qi, SHI Chong, LI Pan, BAI Jing, CHANG Chun. Study on the characteristics of fast pyrolysis of biomass under the catalysis of Fe-Zn co-modified ZSM-5[J]. J Chem Ind Eng,2020,71(4):1637−1645.
    [9] PAYSEPAR H, RAO K T V, YUAN Z Y, YUAN Z S, SHUI H F, XU C B. Improving activity of ZSM-5 zeolite catalyst for the production of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis[J]. Appl Catal A: Gen,2018,563:154−162. doi: 10.1016/j.apcata.2018.07.003
    [10] LIU Q, WANG J Z, ZHOU J, YU Z W. Promotion of monocyclic aromatics by catalytic fast pyrolysis of biomass with modified HZSM-5[J]. J Anal Appl Pyrolysis,2021,153:104964. doi: 10.1016/j.jaap.2020.104964
    [11] CHE Q F, YANG M J, WANG X H, YANG Q, WILLIAMS L R, YANG H P, ZOU J, ZENG K, ZHU Y J, CHEN Y Q, CHEN H P. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis[J]. Bioresour Technol,2019,278:248−254. doi: 10.1016/j.biortech.2019.01.081
    [12] YANG M F, SHAO J G, YANG Z X, YANG H P, WANG X H, WU Z S, CHEN H P. Conversion of lignin into light olefins and aromatics over Fe/ZSM-5 catalytic fast pyrolysis: Significance of Fe contents and temperature[J]. J Anal Appl Pyrolysis,2019,137:259−265. doi: 10.1016/j.jaap.2018.12.003
    [13] 马会霞, 周峰, 武光, 傅杰, 乔凯. 多级孔HZSM-5分子筛催化快速热解生物质制芳烃[J]. 化工学报,2020,71(11):5200−5207.

    MA Hui-xia, ZHOU Feng, WU Guang, FU Jie, QIAO Kai. Hierarchical pore HZSM-5 molecular sieve catalyzed rapid pyrolysis of biomass to aromatics[J]. J Chem Ind Eng,2020,71(11):5200−5207.
    [14] 王在花, 李琰, 马艳萍. 炼油废催化剂的回收利用现状研究[J]. 化工管理,2019,(34):166−167. doi: 10.3969/j.issn.1008-4800.2019.34.090

    WANG Zai-hua, LI Yan, MA Yan-ping. Research on the current situation of recycling and utilization of waste catalysts in oil refining[J]. Chem Enterp Manage,2019,(34):166−167. doi: 10.3969/j.issn.1008-4800.2019.34.090
    [15] RO D, KIM Y M, LEE I G, JAE J, JUNG S C, KIM S C, PARK Y K. Bench scale catalytic fast pyrolysis of empty fruit bunches over low cost catalysts and HZSM-5 using a fixed bed reactor[J]. J Clean Prod,2018,176:298−303. doi: 10.1016/j.jclepro.2017.12.075
    [16] WANG Q H, LI Y, CHELSEA B, LI Y M, CHEN C M, AN Z X, MOHAMED G E D. Spent fluid catalytic cracking (FCC) catalyst enhances pyrolysis of refinery waste activated sludge[J]. J Clean Prod,2021,295:126382. doi: 10.1016/j.jclepro.2021.126382
    [17] HUANG Z H, QIN L B, XU Z, CHEN W S, XING F T, HAN J. The effects of Fe2O3 catalyst on the conversion of organic matter and bio-fuel production during pyrolysis of sewage sludge[J]. J Energy Inst,2019,92:835−842. doi: 10.1016/j.joei.2018.06.015
    [18] SONG Q, ZHAO H Y, MA Q X, YANG L, MA L, WU Y, ZHANG P. Catalytic upgrading of coal volatiles with Fe2O3 and hematite by TG-FTIR and Py-GC/MS[J]. Fuel,2021,92(4):835−842.
    [19] LIN Y Y, ZHANG C, ZHANG M C, ZHANG J. Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor[J]. Energy Fuels,2010,24(10):5686−5695. doi: 10.1021/ef1009605
    [20] YUAN R, SHEN Y F. Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production[J]. Bioresour Technol,2019,293:122076. doi: 10.1016/j.biortech.2019.122076
    [21] 崔石岩, 张明慧, 孙永峰, 蒋曼, 高恩霞, 卢中博. 高炉灰与赤泥共还原—磁选回收铁试验研究[J]. 金属矿山,2020,(3):102−107. doi: 10.19614/j.cnki.jsks.202003015

    CUI Shi-yan, ZHANG Ming-hui, SUN Yong-feng, JIANG Man, GAO En-xia, LU Zhong-bo. Experimental study on co-reduction of blast furnace ash and red mud - magnetic separation for iron recovery[J]. Met Min,2020,(3):102−107. doi: 10.19614/j.cnki.jsks.202003015
    [22] PANG Y J, WU D, CHEN Y S, XU J, WU J R, ZHAI M S. Pyrolysis of pine pellets catalyzed by blast furnace gas ash[J]. Chem Eng Process,2020,156:108094. doi: 10.1016/j.cep.2020.108094
    [23] 刘志超, 仲兆平, 丁宽, 张波. 松木屑催化热解及热解油分析[J]. 燃烧科学与技术,2014,20(1):91−94.

    LIU Zhi-chao, ZHONG Zhao-ping, DING Kuan, ZHANG Bo. Catalytic pyrolysis of pine sawdust and analysis of pyrolysis oil[J]. J Combust Sci Technol,2014,20(1):91−94.
    [24] 黄金保. 纤维素快速热解机理的分子模拟研究[D]. 重庆: 重庆大学, 2010.

    HUANG Jin-bao. Molecular simulation study on the rapid pyrolysis mechanism of cellulose[D]. Chongqing: Chongqing University, 2010.
    [25] HU C S, LIU C, LIU Q Y, ZHANG H Y, WU S L, XIAO R. Effects of steam to enhance the production of light olefins from ex-situ catalytic fast pyrolysis of biomass[J]. Fuel Process Technol,2020,210:106562. doi: 10.1016/j.fuproc.2020.106562
    [26] ADENIYI A G, OTOIKHIAN K S, IGHALO J O. Steam reforming of biomass pyrolysis oil: A review[J]. Int J Chem React Eng,2019,17(4):20180328.
    [27] FRENCH R, CZERNIK S. Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Process Technol,2010,91(1):25−32. doi: 10.1016/j.fuproc.2009.08.011
    [28] ARENILLAS A, RUBIERA F, PIS J J, CUESTA M J, LGLESIAS M J, JIMENEZ A, SUAREZ-RUIZ I. Thermal behaviour during the pyrolysis of low rank perhydrous coals[J]. J Anal Appl Pyrolysis,2003,68(03):371−385.
    [29] YANG J K, XU X Y, SHA L, GUAN R N, LI H S, CHEN Y, LIU B C, SONG J, YU W B, XIAO K K, HOU H J, HU J P, YAO H, XIAO B. Enhanced hydrogen production in catalytic pyrolysis of sewage sludge by red mud: Thermogravimetric kinetic analysis and pyrolysis characteristics[J]. Int J Hydrogen Energy, 43(16): 7795−7807.
    [30] LOY A C M, YUSUP S, LAM M K, CHIN B L F, SHAHBAJ M, YAMAMOTO A, ACDA M N. The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production[J]. Energy Convers Manage,2018,165:541−554. doi: 10.1016/j.enconman.2018.03.063
    [31] FU P, YI W M, BAI X Y, LI Z H, HU S, XIANG J. Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues[J]. Bioresour Technol,2011,102(17):8211−8219. doi: 10.1016/j.biortech.2011.05.083
    [32] ATIENZA M M, RUBIO I, FONTS I, CEAMANOS J, GEA G. Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vaporsusing γ-Al2O3[J]. Chem Eng J,2017,308:264−274. doi: 10.1016/j.cej.2016.09.042
    [33] 戴贡鑫, 王冠宇, 王凯歌, 朱玲君, 王树荣. 2, 6-二甲氧基苯酚热解机理研究[J]. 燃烧科学与技术,2020,26(6):501−506.

    DAI Gong-xing, WANG Guan-yu, WANG Kai-ge, ZHU Ling-jun, WANG Shu-rong. Study on the pyrolysis mechanism of 2, 6-dimethoxyphenol[J]. J Combust Sci Technol,2020,26(6):501−506.
    [34] AMEN-CHEN C, PAKDEL H, ROY C. Production of monomeric phenols by thermochemical conversion of biomass: a review[J]. Bioresour Technol,2001,79(3):277−299. doi: 10.1016/S0960-8524(00)00180-2
    [35] FERRARI M, BOSMANS S, MAGGI R, DELMON B, GRANGR P. CoMo/carbon hydrodeoxygenation catalysts: influence of the hydrogen sulfide partial pressure and of the sulfidation temperature[J]. Catal Today,2001,65(2):257−264.
    [36] WU D, LIU G J, SUN R Y, XIANG F. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and x-ray diffraction[J]. Energy Fuels,2013,27(10):5823−5830. doi: 10.1021/ef401276h
    [37] LIEVENS C, MOURANT D, HE M, GUNAWAN R, LI X, LI C Z. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils[J]. Fuel, 90(11): 3417-3423.
    [38] PAINTER P C, SNYDER R W, STARSINIC M, COLEMAN M M, KUEHN D W, DAVIS A. Concerning the application of FT-IR to the study of coal: a critical assessment of band assign-ments and the application of spectral analysis programs[J]. Appl Spectrosc,1981,35(5):475−485. doi: 10.1366/0003702814732256
    [39] JIANG J Y, YANG W H, CHENG Y P, LIU Z D, ZHANG Q, ZHAO K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel,2019,239:559−572. doi: 10.1016/j.fuel.2018.11.057
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  81
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 修回日期:  2022-04-25
  • 录用日期:  2022-04-27
  • 网络出版日期:  2022-08-06
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回