留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磺胺嘧啶银/超强碱协同催化CO2/醇耦合反应选择性制碳酸二甲酯

张福灿 刘平 张侃 吉可明 张建利 赵亮 宋清文

张福灿, 刘平, 张侃, 吉可明, 张建利, 赵亮, 宋清文. 磺胺嘧啶银/超强碱协同催化CO2/醇耦合反应选择性制碳酸二甲酯[J]. 燃料化学学报(中英文), 2023, 51(3): 304-313. doi: 10.1016/S1872-5813(22)60053-7
引用本文: 张福灿, 刘平, 张侃, 吉可明, 张建利, 赵亮, 宋清文. 磺胺嘧啶银/超强碱协同催化CO2/醇耦合反应选择性制碳酸二甲酯[J]. 燃料化学学报(中英文), 2023, 51(3): 304-313. doi: 10.1016/S1872-5813(22)60053-7
ZHANG Fu-can, LIU Ping, ZHANG Kan, JI Ke-ming, ZHANG Jian-li, ZHAO Liang, SONG Qing-wen. Selective synthesis of dimethyl carbonate via the coupling reaction of CO2 and alcohols by the synergistic catalysis of silver sulfadiazine and superbase[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 304-313. doi: 10.1016/S1872-5813(22)60053-7
Citation: ZHANG Fu-can, LIU Ping, ZHANG Kan, JI Ke-ming, ZHANG Jian-li, ZHAO Liang, SONG Qing-wen. Selective synthesis of dimethyl carbonate via the coupling reaction of CO2 and alcohols by the synergistic catalysis of silver sulfadiazine and superbase[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 304-313. doi: 10.1016/S1872-5813(22)60053-7

磺胺嘧啶银/超强碱协同催化CO2/醇耦合反应选择性制碳酸二甲酯

doi: 10.1016/S1872-5813(22)60053-7
基金项目: 山西省自然科学基金(20210302123002, 202103021223460),潞安化工集团有限公司研发基金和省部共建煤炭高效利用与绿色化工国家重点实验室开放基金(2022-K20)资助
详细信息
    通讯作者:

    E-mail: jikeming@sxicc.ac.cn

    songqingwen@sxicc.ac.cn

  • 中图分类号: O622.5

Selective synthesis of dimethyl carbonate via the coupling reaction of CO2 and alcohols by the synergistic catalysis of silver sulfadiazine and superbase

Funds: The project was supported by the Natural Science Foundation of Shanxi (20210302123002, 202103021223460), Technical research and development project from Lu'an Chemical Industry Group Co., Ltd. and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K20).
  • 摘要: 甲醇、CO2和炔丙醇三组分耦合反应为合成绿色化学品碳酸二甲酯(DMC)提供了一种热力学有利新路径。本工作针对该方法中存在的DMC收率低、中间产物转化速率慢的问题,研究了炔烃衍生物α-单取代炔丙醇在耦合反应中对DMC收率及选择性的影响。发展了磺胺嘧啶银与超强碱协同催化串联反应策略,进一步提升了反应效率。考察了催化剂、共催化剂、催化剂用量、溶剂、温度、原料比、压力和时间等因素的影响规律。最优的条件下,DMC选择性达89.5%,收率55.6%。研究表明,炔丙醇的结构会显著影响反应进程,同时,磺胺嘧啶银与1,8-二氮杂二环十一碳-7-烯(DBU)的协同催化作用是高收率、高选择性获得DMC的关键因素。
  • FIG. 2155.  FIG. 2155.

    FIG. 2155.  FIG. 2155.

    图  1  催化剂用量的影响

    Figure  1  Catalyst loading investigation

    Reaction condition: 1a (620 mg, 5 mmol), 2a (320 mg, 10 mmol), DBU (228 mg, 1.5 mmol), CO2 (5 MPa), 120 ℃, 8 h, the loading of silver sulfadiazine was calculated on the basis of 1a, the results were determined by GC using biphenyl as the internal standard

    图  2  温度对反应的影响

    Figure  2  Temperature effect on the reaction

    Reaction condition: 1a (620 mg, 5 mmol), 2a (320 mg, 10 mmol), silver sulfadiazine (357 mg, 1 mmol), DBU (228 mg, 1.5 mmol), DMSO (1 mL), CO2 (5 MPa), 8 h, the results were determined by GC using biphenyl as the internal standard

    图  3  原料配比对反应的影响

    Figure  3  Effect of raw material ratio on reaction

    Reaction condition: 1a (620 mg, 5 mmol), 2a (160−640 mg, 10− 40 mmol), silver sulfadiazine (357 mg, 1 mmol), DBU (228 mg, 1.5 mmol), DMSO (1 mL), CO2 (5 MPa), 120 ℃, 8 h, the yield was determined by GC using biphenyl as the internal standard

    图  4  压力对三组分反应的影响

    Figure  4  Pressure effect on the three-component reaction

    Reaction condition: 1a (620 mg, 5 mmol), 2a (320 mg, 10 mmol), silver sulfadiazine (357 mg, 1 mmol), DBU (228 mg, 1.5 mmol), DMSO (1 mL), 120 ℃, 8 h, the results were determined by GC using biphenyl as the internal standard

    图  5  时间对反应的影响

    Figure  5  Effect of the reaction time

    Reaction condition: 1a (620 mg, 5 mmol), 2a (320 mg, 10 mmol), silver sulfadiazine (357 mg, 1 mmol), DBU (228 mg, 1.5 mmol), DMSO (1 mL), CO2 (5 MPa), 120 ℃, the results were determined by GC using biphenyl as the internal standard

    图  6  炔丙醇结构与DMC收率和选择性的关系

    Figure  6  Relationship between propargyl alcohol structure and the yield/selectivity of DMC

    Reaction condition: propargyl alcohol (5 mmol), methanol (320 mg, 10 mmol), silver sulfadiazine (357 mg, 1 mmol), DBU (228 mg, 1.5 mmol), DMSO (1 mL), CO2 (5 MPa), 120 ℃, 8 h, the results were determined by GC using biphenyl as the internal standard

    图  7  磺胺嘧啶银/DBU催化炔丙醇、甲醇和CO2三组分耦合反应机理示意图(修改:炔丙醇底物红色标记的氧原子漏了一个氢原子,氢原子和带负电荷N原子发生相互作用,实现羟基活化;中间体A中DBU, 修改为DBUH+,DBUH+ 与碳酸酯中带负电荷的蓝色标记的氧原子作用,稳定过渡态)

    Figure  7  Cascade reaction mechanism of propargyl alcohol, methanol and CO2 catalyzed by silver sulfadiazine/DBU

    表  1  催化剂性能

    Table  1  Catalysts investigation

    EntryCatalyst1a conv./%2a conv./%DMC yield/%4a yield/%DMC sel./%4a sel./%
    1a0000
    262.950.015.625.231.250.4
    3CoCO314.110.23.75.636.354.9
    4NiBr233.732.33.38.010.224.8
    5CuBr96.548.635.436.372.974.7
    6ZnCl299.980.329.634.736.943.2
    7ZnBr298.777.533.139.042.754.6
    8ZnI298.340.617.827.143.842.5
    9Zn(OAc)299.258.630.441.651.971.1
    10AgCl98.139.230.535.177.789.6
    11AgI99.538.116.723.743.862.1
    12AgOAc99.044.034.841.579.194.2
    13Ag2SO499.364.926.235.940.555.4
    14Ag3PO496.341.927.736.966.288.1
    15AgVO353.635.820.027.756.177.5
    16CF3SO3Ag95.762.810.123.116.036.9
    17C7H5AgO297.238.925.229.764.876.3
    18Ag2CO376.861.912.246.919.775.9
    19Ag2O98.853.840.446.375.186.1
    20silver sulfadiazine99.953.141.842.678.780.4
    Reaction condition: 1a (620 mg, 5 mmol), 2a (320 mg, 10 mmol), catalyst (1 mmol), DBU (228 mg, 1.5 mmol), CO2 (5 MPa), 120 ℃, 8 h, a: In the absence of any catalyst and cocatalyst, the results were determined by GC using biphenyl as the internal standard, conversion (conv.), selectivity (sel.)
    下载: 导出CSV

    表  2  共催化剂性能

    Table  2  Co-catalyst investigation

    EntryCo-catalyst1a conv./%2a conv./%DMC
    yield/%
    4a yield/%DMC sel./%4a sel./%
    1a87.642.32.24.45.210.4
    2DBU99.953.141.842.678.780.2
    3DBN98.572.721.934.830.147.9
    4TMG99.765.017.518.526.928.5
    5TBD98.772.62.23.53.04.8
    6TBAB100.088.23.23.43.63.9
    7TEAC99.578.74.77.26.09.1
    8TBAB/DBU99.773.622.835.531.048.2
    9PPh3/DBU100.049.22.86.45.713.0
    Reaction condition: 1a (620 mg, 5 mmol), 2a (320 mg, 10 mmol), silver sulfadiazine (1 mmol), cocatalyst (1.5 mmol), CO2 (5 MPa), 120 ℃, 8 h, a: only silver sulfadiazine was used, the results were determined by GC using biphenyl as the internal standard
    下载: 导出CSV

    表  3  溶剂对反应的影响

    Table  3  Solvent effect on the reaction

    EntrySolvent1a conv./%2a conv./%DMC yield/%4a yield/%DMC sel./%4a sel./%
    1Blank99.953.141.842.678.780.4
    2DMSO99.662.155.659.489.595.7
    3DMF99.553.935.739.066.372.4
    4CH3CN99.558.234.437.859.165.0
    5EtOAc99.448.724.433.350.068.4
    6PhCH398.051.337.341.772.881.3
    7tetrahydrofuran99.649.229.235.259.371.5
    Reaction condition: 1a (620 mg, 5 mmol), 2a (320 mg, 10 mmol), silver sulfadiazine (357 mg, 1 mmol), DBU (228 mg, 1.5 mmol), solvent (1 mL), CO2 (5 MPa), 120 ℃, 8 h, the results were determined by GC using biphenyl as the internal standard
    下载: 导出CSV
  • [1] SONG Q W, ZHOU Z H, HE L N. Efficient, selective and sustainable catalysis of carbon dioxide[J]. Green Chem,2017,19(16):3707−3728. doi: 10.1039/C7GC00199A
    [2] LU M, ZHANG M, LIU J, CHEN Y, LIAO J P, YANG M Y, CAI Y P, LI S L, LAN Y Q. Covalent organic framework based functional materials: important catalysts for efficient CO2 utilization[J]. Angew Chem Int Ed,2022,61(15):e202200003.
    [3] HE X, QIU L Q, WANG W J, CHEN K H, HE L N. Photocarboxylation with CO2: an appealing and sustainable strategy for CO2 fixation[J]. Green Chem,2020,22(21):7301−7320. doi: 10.1039/D0GC02743J
    [4] AOMCHAD V, CRISTOFOL A, DELLA F, LIMBURG B, DELIA V, KLEIJ A W. Recent progress in the catalytic transformation of carbon dioxide into biosourced organic carbonates[J]. Green Chem,2021,23(3):1077−1113. doi: 10.1039/D0GC03824E
    [5] BURKART M D, HAZARI N, TWAY C L, ZEITLER E L. Opportunities and challenges for catalysis in carbon dioxide utilization[J]. ACS Catal,2019,9(9):7937−7956. doi: 10.1021/acscatal.9b02113
    [6] TAN H Z, WANG Z Q, XU Z N, SUN J, XU Y P, CHEN Q S, CHEN Y, GUO G C. Review on the synthesis of dimethyl carbonate[J]. Catal Today,2018,316:2−12. doi: 10.1016/j.cattod.2018.02.021
    [7] KUMAR P, SRIVASTAVA V C, STANGAR U L, MUSIC B, MISHRA I M, MENG Y. Recent progress in dimethyl carbonate synthesis using different feedstock and techniques in the presence of heterogeneous catalysts[J]. Catal Rev,2019,63(3):363−421.
    [8] TAMBOLI A H, CHAUGULE A A, KIM H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chem Eng J,2017,323:530−544. doi: 10.1016/j.cej.2017.04.112
    [9] BALLIVET D, JERPHAGNON T, LIGABUE R, PLASSERAUD L, POINSOT D. The role of distannoxanes in the synthesis of dimethyl carbonate from carbon dioxide[J]. Appl Catal A: Gen,2003,255(1):93−99. doi: 10.1016/S0926-860X(03)00647-1
    [10] HONDA M, TAMURA M, NAKAGAWA Y, SONEHARA S, SUZUKI K, FUJIMOTO K, TOMISHIGE K. Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine[J]. ChemSusChem,2013,6(8):1341−1346. doi: 10.1002/cssc.201300229
    [11] HE H, QI C, HU X, GUAN Y, JIANG H. Efficient synthesis of tertiary α-hydroxy ketones through CO2-promoted region-selective hydration of propargylic alcohols[J]. Green Chem,2014,16(8):3729−3733. doi: 10.1039/C4GC00522H
    [12] ZHAO Y, YANG Z, YU B, ZHANG H, XU H, HAO L, HAN B, LIU Z. Task-specific ionic liquid and CO2-cocatalysed efficient hydration of propargylic alcohols to α-hydroxy ketones[J]. Chem Sci,2015,6(4):2297−2301. doi: 10.1039/C5SC00040H
    [13] ZHOU Z H, SONG Q W, HE L N. Silver(I)-promoted cascade reaction of propargylic alcohols, carbon dioxide, and vicinal diols: thermodynamically favorable route to cyclic carbonates[J]. ACS Omega,2017,2(1):337−345. doi: 10.1021/acsomega.6b00407
    [14] ZHOU H, ZHANG H, MU S, ZHANG W Z, REN W M, LU X B. Highly regio and stereoselective synthesis of cyclic carbonates from biomass-derived polyols via organocatalytic cascade reaction[J]. Green Chem,2019,21(23):6335−6341. doi: 10.1039/C9GC03013A
    [15] HU J, MA J, LU L, QIAN Q, ZHANG Z, XIE C, HAN B. Synthesis of asymmetrical organic carbonates using CO2 as a feedstock in AgCl/ionic liquid system at ambient conditions[J]. ChemSusChem,2017,10(6):1292−1297. doi: 10.1002/cssc.201601773
    [16] 张乾霞, 刘平, 张侃, 韩丽华, 宋清文. 多组分串联策略固定CO2制碳酸二甲酯和α-羟基酮[J]. 科学通报,2020,65(31):3429−3437. doi: 10.1360/TB-2020-0351

    ZHANG Qian-xia, LIU Ping, ZHANG Kan, HAN Li-hua, SONG Qing-wen. Multicomponent cascade strategy of CO2 fixation for synthesis of dimethyl carbonate and α-hydroxy ketone[J]. Chin Sci Bull,2020,65(31):3429−3437. doi: 10.1360/TB-2020-0351
    [17] SONG Q W, CHEN W Q, MA R, YU A, LI Q Y, CHANG Y, HE L N. Bifunctional silver(I) complex-catalyzed CO2 conversion at ambient conditions: synthesis of α-methylene cyclic carbonates and derivatives[J]. ChemSusChem,2015,8(5):821−827. doi: 10.1002/cssc.201402921
    [18] YUAN Y, XIE Y, ZENG C, SONG D, CHAEMCHUEN S, CHEN C, VERPOORT F. A simple and robust AgI/KOAc catalytic system for the carboxylative assembly of propargyl alcohols and carbon dioxide at atmospheric pressure[J]. Catal Sci Technol,2017,7(14):2935−2939. doi: 10.1039/C7CY00696A
    [19] LI J Y, HAN L H, XU Q C, SONG Q W, LIU P, ZHANG K. Cascade strategy for atmospheric pressure CO2 fixation to cyclic carbonates via silver sulfadiazine and Et4NBr synergistic catalysis[J]. ACS Sustainable Chem Eng,2019,7(3):3378−3388. doi: 10.1021/acssuschemeng.8b05579
    [20] CERVANTES R A, SAXL T, STEIN P M, RUDOLPH M, ROMINGER F, ASIRI A M, HASHMI A S. Expanded ring NHC silver carboxylate complexes as efficient and reusable catalysts for the carboxylative cyclization of unsubstituted propargylic derivatives[J]. ChemSusChem,2021,14(11):2367−2374. doi: 10.1002/cssc.202002822
    [21] MCCORMACK A C, OFERRALL R A, ODONOGHU A C, RAO S N. Protonated benzofuran, anthracene, naphthalene, benzene, ethene, and ethyne:   measurements and estimates of pKa and pKR[J]. J Am Chem Soc,2002,124(29):8575−8583. doi: 10.1021/ja012613x
    [22] CA N D, GABRIELE B, RUFFOLO G, VELTRI L, ZANETTA T, COSTA M. Effective Guanidine-catalyzed synthesis of carbonate and carbamate derivatives from propargyl alcohols in supercritical carbon dioxide[J]. Adv Synth Catal,2011,353(1):133−146. doi: 10.1002/adsc.201000607
    [23] ZHOU Z H, SONG Q W, XIE J N, MA R, HE L N. Silver(I)-catalyzed three-component reaction of propargylic alcohols, carbon dioxide and monohydric alcohols: Thermodynamically feasible access to β-oxopropyl carbonates[J]. Chem-Asian J,2016,11(14):2065−2071.
    [24] SEKINE K, YAMADA T. Silver-catalyzed carboxylation[J]. Chem Soc Rev,2016,45(16):4524−4532. doi: 10.1039/C5CS00895F
  • 2022-S016_辅助材料_燃料化学学报.docx
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  2308
  • HTML全文浏览量:  191
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-07-07
  • 录用日期:  2022-07-13
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回