留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bonding mechanism of binder and low-rank coal during carbonization

WANG Ming-yi CHANG Zhi-wei LIU Yue-hua SHANGGUAN Ju DU Wen-guang MA Rui WANG Qi LIU Jun-jie LIU Shou-jun YANG Song

王明义, 常志伟, 刘月华, 上官炬, 杜文广, 马睿, 王琪, 刘俊杰, 刘守军, 杨颂. 炭化过程中黏结剂与低阶煤的结合机理[J]. 燃料化学学报(中英文), 2022, 50(12): 1564-1572. doi: 10.1016/S1872-5813(22)60062-8
引用本文: 王明义, 常志伟, 刘月华, 上官炬, 杜文广, 马睿, 王琪, 刘俊杰, 刘守军, 杨颂. 炭化过程中黏结剂与低阶煤的结合机理[J]. 燃料化学学报(中英文), 2022, 50(12): 1564-1572. doi: 10.1016/S1872-5813(22)60062-8
WANG Ming-yi, CHANG Zhi-wei, LIU Yue-hua, SHANGGUAN Ju, DU Wen-guang, MA Rui, WANG Qi, LIU Jun-jie, LIU Shou-jun, YANG Song. Bonding mechanism of binder and low-rank coal during carbonization[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1564-1572. doi: 10.1016/S1872-5813(22)60062-8
Citation: WANG Ming-yi, CHANG Zhi-wei, LIU Yue-hua, SHANGGUAN Ju, DU Wen-guang, MA Rui, WANG Qi, LIU Jun-jie, LIU Shou-jun, YANG Song. Bonding mechanism of binder and low-rank coal during carbonization[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1564-1572. doi: 10.1016/S1872-5813(22)60062-8

炭化过程中黏结剂与低阶煤的结合机理

doi: 10.1016/S1872-5813(22)60062-8
详细信息
  • 中图分类号: TQ536.1

Bonding mechanism of binder and low-rank coal during carbonization

Funds: The project was supported by Shanxi Province Basic Research Plan (202103021223087), Shanxi Province Science and Technology Achievement Transformation Guidance Special Project (202104021301052), the National Natural Science Foundation of China (22169017) and sponsored by Mettler Toledo and Taiyuan Green Coke Energy Co., Ltd. (China).
More Information
  • 摘要: 由于低阶煤缺乏黏结性,在工业型焦生产中的应用十分有限。为了利用低阶粉煤代替块煤作为原料生产清洁燃料,本研究采用洗油渣(WOR)作为黏结剂以增强其结构强度,并研究了黏结剂添加量和碳化温度对焦炭强度的影响。当碳化温度为800 °C,WOR与低阶煤的质量比为3∶7时,焦炭的抗压强度最好,M25达到97%。而煤热解固相产物的SEM分析表明WOR的热塑性是导致焦炭强度升高的主因,且黏结机理可总结为:热塑性的WOR在升温过程中软化熔融,包覆在煤颗粒表面且形成煤-黏结剂界面,将原本松散的惰性煤颗粒结合在一起,进而显著提高了焦炭强度。
  • FIG. 2022.  FIG. 2022.

    FIG. 2022.  FIG. 2022.

    Figure  1  Scheme of coke preparation process

    Figure  2  Schematic diagram of the experimental for briquette pyrolysis

    Figure  3  Homemade coke drum machine

    Figure  4  Effect of WOR content on drum strength

    Figure  5  Effect of different fraction of WOR binder on the caking properties of coke

    Figure  6  Effect of carbonization temperature on drum strength

    Figure  7  SEM images of coke at different carbonization temperatures

    (a): coke300; (b): coke400; (c): coke500; (d): coke600; (e): coke700; (f): coke800; (g): coke900; (h): coke1050

    Figure  8  FT-IR spectra of coke produced at different temperatures

    Figure  9  XRD patterns of coke produced at different temperatures

    Figure  10  Colloidal layer index of coke (SXC: WOR=7:3)

    Figure  11  SEM images of SXC at different carbonization temperatures

    (a): C-300; (b): C-400; (c): C-500; (d): C-800

    Figure  12  SEM images of WOR at different carbonization temperatures

    (a): W-300; (b): W-400; (c): W-500; (d): W-800

    Figure  13  Schematic of the bonding mechanism of WOR and low-rank coal during carbonization

    Table  1  Proximate and ultimate analyses of the coal sample and WOR

    Sample Ultimate analysis wdaf/% Proximate analysis w/%
    C H N S Oa Mad Ad Vdaf G
    SXC 80.64 4.95 1.17 0.48 12.76 3.19 6.41 37.46 0
    WOR 73.91 3.87 0.75 1.86 19.61 0.29 17.77 41.27 90
    a: by difference
    下载: 导出CSV
  • [1] WANG P Q, WANG C A, YUAN M B, WANG C W, ZHANG J P, DU Y B, TAO Z C, CHE D F. Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere[J]. Appl Energy,2020,260:114203−114203. doi: 10.1016/j.apenergy.2019.114203
    [2] CAI S Y, LI Q, WANG S X, CHEN J M, DING D, ZHAO B, YANG D S, HAO J M. Pollutant emissions from residential combustion and reduction strategies estimated via a village-based emission inventory in Beijing[J]. Environ Pollut,2018,238:230−237. doi: 10.1016/j.envpol.2018.03.036
    [3] GALVEZ M E, BOYANO A, MOLONER R, LAZARO M J. Low-cost carbon-based briquettes for the reduction of NO emissions: Optimal preparation procedure and influence in operating conditions[J]. J Anal Appl Pyrolysis,2010,88(1):80−90. doi: 10.1016/j.jaap.2010.02.010
    [4] JIAN Y M, LI X, ZHU X Q, ASHIDA R, WORASUWANNARAK N, HU Z Z, LUO G Q, YAO H, ZHONG M, LIU J M, MA F Y, MIURA K. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. J Fuel Chem Technol,2019,47(1):14−22. doi: 10.1016/S1872-5813(19)30003-9
    [5] CHEN Y J, TIAN C G, FENG Y L, ZHI G R, LI J, ZHANG G. Measurements of emission factors of PM2.5, OC, EC, and BC for household stoves of coal combustion in China[J]. Atmos Environ,2015,109:190−196.
    [6] DU W, LI X Y, CHEN Y C, SHEN G F. Household air pollution and personal exposure to air pollutants in rural China - A review[J]. Environ Pollut,2018,237:625−638. doi: 10.1016/j.envpol.2018.02.054
    [7] MANORANJAN S, JOHN P, VIDHI S, GAUTAM N Y, PRATIM B. Evaluation of mass and surface area concentration of particle emissions and development of emissions indices for cookstoves in rural India[J]. Environ Sci Technol,2011,45(6):2428−2434.
    [8] ZHANG K X, YANG S, LIU S J, SHANGGUAN, J, CHANG, Z W. New strategy toward household coal combustion by remarkably reducing SO2 Emission[J]. ACS Omega,2020,5(6):3047−3054. doi: 10.1021/acsomega.9b04293
    [9] LIU S J, SHANGGUAN J, YANG S, DU W G, YAN X D, ZHANG K X, PLÁ R R. Producing effective and clean coke for household combustion activities to reduce gaseous pollutant emissions[J]. J Chem,2019,2019:1−12.
    [10] CHATTERJEE A, PRASAD H N. Possibilities of tar addition to coal as a method of improving coke strength[J]. Fuel,1983,62(5):591−600. doi: 10.1016/0016-2361(83)90232-6
    [11] GONZALEZCIMAS M, PATRICK J, WALKER A. Influence of pitch additions on coal carbonization coke strength and structural properties[J]. Fuel,1987,66(8):1019−1023. doi: 10.1016/0016-2361(87)90294-8
    [12] JASIENKO S, GRYGLEWICZ G. Co-carbonization of hard coals and coal extracts 1. The co-carbonization of low rank coals with extracts[J]. Fuel Process Technol,1983,7(2):77−90. doi: 10.1016/0378-3820(83)90028-0
    [13] TAKANOHASHI T, SHISHIDO T, SAITO I. Effects of hypercoal addition on coke strength and thermoplasticity of coal blends[J]. Energy Fuels,2008,22(3):1779−1783. doi: 10.1021/ef7007375
    [14] TAKANOHASHI T, SHISHIDO T, SAITO I, MASAKI K, DOBASHI A, FUKADA K. Synergistic effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement[J]. Energy Fuels,2006,20(6):2552−2556. doi: 10.1021/ef0602675
    [15] ALVAREZ R, PIS J J, DÍEZ M A, BARRIOCANAL C, CANGA C S, MENÉNDEZ J A. A semi-industrial scale study of petroleum coke as an additive in cokemaking[J]. Fuel Process Technol,1998,55(2):129−141. doi: 10.1016/S0378-3820(97)00078-7
    [16] BENK A, COBAN A. Investigation of resole, novalac and coal tar pitch blended binder for the production of metallurgical quality formed coke briquettes from coke breeze and anthracite[J]. Fuel Process Technol,2011,92(3):631−638. doi: 10.1016/j.fuproc.2010.11.022
    [17] JIMENEZ F, MONDRAGON F, LOPEZ D. Structural changes in coal chars after pressurized pyrolysis[J]. J Anal Appl Pyrolysis,2012,95:164−170. doi: 10.1016/j.jaap.2012.02.003
    [18] ZHONG Q, YANG Y B, LI Q, XU B, JIANG T. Coal tar pitch and molasses blended binder for production of formed coal briquettes from high volatile coal[J]. Fuel Process Technol,2017,157:12−19. doi: 10.1016/j.fuproc.2016.11.005
    [19] ZHONG Q, YANG Y B, JIANG T, LI Q, XU B. Xylene activation of coal tar pitch binding characteristics for production of metallurgical quality briquettes from coke breeze[J]. Fuel Process Technol,2016,148:12−18. doi: 10.1016/j.fuproc.2016.02.026
    [20] MASSARO M M, SON S F, GROVEN L J. Mechanical, pyrolysis, and combustion characterization of briquetted coal fines with municipal solid waste plastic (MSW) binders[J]. Fuel,2014,115:62−69. doi: 10.1016/j.fuel.2013.06.043
    [21] ARSLAN V. Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar[J]. Energy Fuels,2006,20(5):2137−2141. doi: 10.1021/ef060281h
    [22] LIU S J, WANG Z, YANG S, CHANG Z W, ZHANG K X. Significantly enhances caking index of long flame coal under tetralin glycerol/H2 system[J]. Asia-Pac J Chem Eng, 2019, 14(5): 2353.
    [23] ZHAO H Y, LI Y H, SONG Q, LV J X, SHU Y F, LIANG X X, SHU X Q. Effects of iron ores on the pyrolysis characteristics of a low-rank bituminous coal[J]. Energy Fuels,2016,30(5):3831−3839. doi: 10.1021/acs.energyfuels.6b00061
    [24] RIVA L, NIELSEN H K, SKREIBERG Y, WANG L, FANTOZZI F. Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke[J]. Appl Energy,2019,256:113933−113933. doi: 10.1016/j.apenergy.2019.113933
    [25] LI X H, LI L L, LI F, FENG J, LI W Y. Product distribution and interactive mechanism during co-pyrolysis of a subbituminous coal and its direct liquefaction residue[J]. Fuel,2017,199:372−379. doi: 10.1016/j.fuel.2017.03.004
    [26] AHMED M. Characterisation of an Egyptian coal by Mossbauer and FT-IR spectroscopy[J]. Fuel,2003,82(14):1825−1829. doi: 10.1016/S0016-2361(03)00131-5
    [27] SUN B L, YU J L, TAHMASEBI A, HAN Y N. An experimental study on binderless briquetting of Chinese lignite: Effects of briquetting conditions[J]. Fuel Process Technol,2014,124:243−248. doi: 10.1016/j.fuproc.2014.03.013
    [28] ASADULLAH M, ZHANG S, MIN Z H, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol,2010,101(20):7935−43. doi: 10.1016/j.biortech.2010.05.048
    [29] ZHAO Y Q, ZHANG Y F, ZHANG H R, WANG Q, GUO Y F. Structural characterization of carbonized briquette obtained from anthracite powder[J]. J Anal Appl Pyrolysis,2015,112:290−297. doi: 10.1016/j.jaap.2015.01.009
    [30] LI M F, ZENG F G, CHANG H Z, XU B S, WANG W. Aggregate structure evolution of low-rank coals during pyrolysis by in-situ X-ray diffraction[J]. Int J Coal Geol,2013,116−117:262−269. doi: 10.1016/j.coal.2013.07.008
    [31] GUPTA S, SAHAJWALLA V, CHAUBAL P, YOUMANS T. Carbon structure of coke at high temperatures and its influence on coke fines in blast furnace dust[J]. Metall Mater Trans B,2005,36(3):385−394. doi: 10.1007/s11663-005-0067-3
    [32] XING X A, ZHANG G B, ROGERS H C, PAUL Z, OLEG O. Effects of annealing on microstructure and microstrength of metallurgical coke[J]. Metall Mater Trans B,2013,45(1):106−112.
    [33] LI K J, KHANNA R, ZHANG J L, BARATI M, LIU Z J, XU T, YANG T J, SAHAJWALLA V. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques[J]. Energy Fuels,2015,29(11):7178−7189. doi: 10.1021/acs.energyfuels.5b02064
    [34] BEHNKE-BOROWCZYK J, KWASNA H, KARTAWIK N, SIJKA B, BEŁKA M, ŁAKOMY P. Effect of management on fungal communities in dead wood of Scots pine[J]. For Ecol Manag,2021,479:118528.
    [35] QIN Z H, LI X, SUN H, ZHAO C C, RONG L M. Caking property and active components of coal based on group component separation[J]. Int Min Sci Technol,2016,26(4):571−575. doi: 10.1016/j.ijmst.2016.05.006
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  60
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 修回日期:  2022-06-01
  • 录用日期:  2022-06-04
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-12-28

目录

    /

    返回文章
    返回