留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融盐对重质生物油再热解影响的研究

陈涛 罗泽军 王储 朱锡锋

陈涛, 罗泽军, 王储, 朱锡锋. 熔融盐对重质生物油再热解影响的研究[J]. 燃料化学学报(中英文), 2023, 51(6): 711-717. doi: 10.1016/S1872-5813(22)60068-9
引用本文: 陈涛, 罗泽军, 王储, 朱锡锋. 熔融盐对重质生物油再热解影响的研究[J]. 燃料化学学报(中英文), 2023, 51(6): 711-717. doi: 10.1016/S1872-5813(22)60068-9
CHEN Tao, LUO Ze-jun, WANG Chu, ZHU Xi-feng. Effect of molten salt on re-pyrolysis behaviors of heavy bio-oil[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 711-717. doi: 10.1016/S1872-5813(22)60068-9
Citation: CHEN Tao, LUO Ze-jun, WANG Chu, ZHU Xi-feng. Effect of molten salt on re-pyrolysis behaviors of heavy bio-oil[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 711-717. doi: 10.1016/S1872-5813(22)60068-9

熔融盐对重质生物油再热解影响的研究

doi: 10.1016/S1872-5813(22)60068-9
基金项目: 国家重点研发计划(2018YFB1501404)资助
详细信息
    作者简介:

    陈涛(1999—),男,硕士研究生,chent0610@mail.ustc.edu.cn

    通讯作者:

    E-mail: xfzhu@ustc.edu.cn

  • 中图分类号: TK6

Effect of molten salt on re-pyrolysis behaviors of heavy bio-oil

Funds: The project was supported by the National Key Research and Development Program of China (2018YFB1501404)
  • 摘要: 研究了KCl-ZnCl2熔融盐在400、500、600 ℃下对重质生物油再热解特性及产物分布的影响。结果表明,熔融盐提高了重质生物油热解的固体产率,同时使气体产率下降;对苯酚、甲基苯酚、乙基苯酚、对丙基苯酚等部分化合物具有较好的富集效果,尤其在400 ℃下甲基苯酚的相对含量从8.82%提升到了20.85%,而苯酚在600 ℃下相对含量从2.18%提升到了8.62%;在炭形成过程中,熔融盐使C元素含量降低,O元素含量提高,增大了孔隙的BET比表面积和总孔容积,促进了固体产物孔隙结构的形成,增大了孔隙的平均孔径。
  • FIG. 2375.  FIG. 2375.

    FIG. 2375.  FIG. 2375.

    图  1  固定床热解装置示意图

    Figure  1  Schematic diagram of fixed bed pyrolysis equipment

    图  2  随受热温度变化的重质生物油再热解产物分布

    Figure  2  Distribution of re-pyrolysis products of heavy bio-oil with heating temperature

    (a): HB pyrolysis product distribution; (b): MS pyrolysis product distribution

    图  3  原油及再热解液体产物各组分的相对峰面积

    Figure  3  Relative peak area of each component of crude oil and re-pyrolysis liquid products

    表  1  重质生物油理化性质

    Table  1  Properties and elemental compositions of heavy bio-oil

    Moisture w/%Ultimate analysisa w/%
    CHObN
    5.1766.367.2225.670.75
    a: dry and ash-free basis, b: by difference
    下载: 导出CSV

    表  2  重质生物油主要有机组分相对峰面积

    Table  2  Relative peak area of main organic components in heavy bio-oil

    ComponentPhenolsAcids, Esters, KetonesAlcoholsHydrocarbons
    Relative peak area /%39.713.083.319.11
    下载: 导出CSV

    表  3  原油及再热解液体产物各组分的相对峰面积

    Table  3  Relative peak area of each component of crude oil and re-pyrolysis liquid products

    ComponentRelative peak area /%
    HB400HB500HB600MS400MS500MS600raw
    Acetic acid 1.01
    Methyl formate 1.01 1.05 1.01 0.94
    Ethyl acetate 0.53
    n-Ethyl propanoate 1.26
    Hexyl butyrate 0.72
    Toluene 0.54 0.5 0.81 0.6
    3-cyclohexyl-1-propanol 1.21 1.28 1.19
    Cyclohexaneacetic acid 1.24
    Styrene 0.54
    2,4-dimethylfuran 0.51 0.6 0.5
    2-methylcyclopentenone 0.96
    Phenol 4.43 5.24 0.54 7.38 6.01 8.62 2.18
    Indene 0.7 0.74 0.8 0.55 0.62 0.81
    Methyl cyclopentenolone 0.55 0.58
    Cresol 13.95 13.34 13.67 20.85 15.55 19.97 8.82
    Guaiacol 2.13 1.44
    7-methylbenzofuran 0.59
    3-methyl-1H-indene 0.56 0.52 0.76 0.71
    Xylenol 5.94 5.7 5.53 6.03 6.53 9.41 4.09
    Ethylphenol 0.98 4.94 2.54 3.01
    Naphthalene 2.75 2.9 3.22 3.47 4.16 4.37 2.98
    2-methoxy-4-methylphenol 4.63 4.07 2.08 3.93 3.44 1.72 4.28
    Trimethylphenol 1.71 2.05 2.53 0.55 2.76 1.04 0.53
    Catechol 3.15 3.78 4.65 1.98 0.99
    1,5,5-trimethyl-6-methylidenecyclohexene 1.68 1.88 1.82 0.83
    6-ethyl-m-cresol 1.86 2.48 1.13
    4-Propylphenol 0.96 0.88 1.71 1.65 1.88
    4-ethyl-2-methoxyphenol 4.34 3.66 2.34 3.76 3.45 1.72 2.86
    1-(2-methoxyphenyl)ethanol 0.67 0.52
    1-methylnaphthalene 1.4 1.53 2.27 1.99 2.4 2.6 2.47
    1-(4-hydroxy-3-methylphenyl)ethanone 0.67 1.02
    4-methylcatechol 3.21 3.46 3.91 1.49 2.08 1.59
    2-methoxy-5-prop-2-enyl-phenol 2.79 2.69 3.63 2.04 0.56 9.78
    4-n-propylanisole 1.22 1.26 1.2
    1-(4-methoxyphenyl)propan-1-ol 1.17
    Vanillyl alcohol 3.5 3.02 1.68 1.78
    Dihydroeugenol 1.57 0.87 0.99
    Diphyl 0.54
    1-ethylnaphthalene 0.6
    trans-isoeugenol 4.26 4.46 2.16 2.05 0.71
    4-ethylcatechol 2.64 3.03 3.31 2.38 2.96 1.01
    5,6-dimethoxy-3-methyl-2,3-dihydroinden-1-one 2.07
    2,6-dimethoxyphenol 1.34 1.62
    Coniferyl alcohol 1.8 2.07 2.04 0.54
    4,4'-dimethoxybenzhydrol 2.82 2.54 2.29 2.47 2.53 0.55
    Vanillin 0.74
    1,4-dimethoxy-2,3-dimethylbenzene 0.99 1.15 0.82 0.72
    5-tert-butylpyrogallol 2.03 1.72 1.04 1.18 1.23 1.77
    4-allyl-2,6-dimethoxyphenol 1.68 1.69 1.31 2.83
    2-tert-butyl-4-methoxyphenol 0.56 0.71
    Phenalene 0.54 0.5 0.6 0.78
    1-phenylpropylbenzene 0.73 0.53
    Anthracene 0.68 0.6 0.74 0.83 0.85 0.99 1.24
    note:− relative peak area < 0.5%
    下载: 导出CSV

    表  4  随受热温度变化的固体产物的元素分析

    Table  4  Ultimate analysis of solid products varying with heating temperature

    SampleUltimate analysisa w/%
    CHObN
    HB40080.653.7513.352.25
    HB50083.453.3811.092.08
    HB60086.912.768.182.15
    MS40064.793.9829.301.93
    MS50062.463.3532.651.54
    MS60063.352.9032.281.47
    a: dry and ash-free basis; b: by difference
    下载: 导出CSV

    表  5  随受热温度变化的固体产物的孔隙特性

    Table  5  Pore characteristics of solid products varying with heating temperature

    SampleBET surface area /(m2·g−1)Total pore volume /(cm3·g−1)Average pore size /nm
    HB400
    HB5004.59830.0023202.0179
    HB60014.53260.0036120.9242
    MS4002.38820.0040516.7856
    MS5007.48150.0077794.1592
    MS60058.47110.0302342.0683
    note:HB400 few pores cannot be measured
    下载: 导出CSV
  • [1] HU H S, WU Y L, YANG M D. Fractionation of bio-oil produced from hydrothermal liquefaction of microalgae by liquid-liquid extraction[J]. Biomass Bioenerg,2018,108:487−500. doi: 10.1016/j.biombioe.2017.10.033
    [2] 马亚凯, 袁鑫华, 罗泽军, 朱锡锋. 精馏系统内真空度对生物油模型化合物蒸馏特性的影响[J]. 燃料化学学报,2022,50(2):160−165. doi: 10.1016/S1872-5813(21)60140-8

    MA Ya-kai, YUAN Xin-hua, LUO Ze-jun, ZHU Xi-feng. Influence of vacuum degrees in rectification system on distillation characteristics of bio-oil model compounds[J]. J Fuel Chem Technol,2022,50(2):160−165. doi: 10.1016/S1872-5813(21)60140-8
    [3] 闫彩辉, 赵炜, 盛晨, 吴晓娜. 柱层析法在生物油分离方面应用的研究进展[J]. 林产化学与工业,2011,31(4):123−126.

    YAN Cai-hui, ZHAO Wei, SHENG Chen, WU Xiao-na. Research progress for separation of bio-oil by column chromatography[J]. Chem Ind Forest Prod,2011,31(4):123−126.
    [4] 王储, 朱锡锋. 分级冷凝生物油组分富集与组分稳定性研究[J]. 燃料化学学报,2018,46(11):1315−1322. doi: 10.3969/j.issn.0253-2409.2018.11.005

    WANG Chu, ZHU Xi-feng. Study on component enrichment and storage stability of bio-oils obtained from fractional condensation[J]. J Fuel Chem Technol,2018,46(11):1315−1322. doi: 10.3969/j.issn.0253-2409.2018.11.005
    [5] LI W, PAN C Y, SHENG L, LIU Z, CHEN P, LOU H, ZHENG X M. Upgrading of high-boiling fraction of bio-oil in supercritical methanol[J]. Bioresour Technol,2011,102(19):9223−8. doi: 10.1016/j.biortech.2011.07.071
    [6] ZHANG X H, TANG W W, ZHANG Q, LI Y P, CHEN L G, XU Y, WANG C G, MA L L. Production of hydrocarbon fuels from heavy fraction of bio-oil through hydrodeoxygenative upgrading with Ru-based catalyst[J]. Fuel,2018,215:825−34. doi: 10.1016/j.fuel.2017.11.111
    [7] JIANG H T, AI N, WANG M, JI D X, JI J B. Experimental study on thermal pyrolysis of biomass in molten salt media[J]. Electrochem,2009,77(8):730−5. doi: 10.5796/electrochemistry.77.730
    [8] ZENG K, YANG X Y, XIE Y P, YANG H P, LI J, ZHONG D, ZUO H Y, NZIHOU A, ZHU Y J, CHEN H P. Molten salt pyrolysis of biomass: The evaluation of molten salt[J]. Fuel,2021,302:121103.
    [9] XIE Y P, ZENG K, FLAMANT G, YANG H P, LIU N, HE X, YANG X Y, NZIHOU A, CHEN H P. Solar pyrolysis of cotton stalk in molten salt for bio-fuel production[J]. Energy,2019,179:1124−32. doi: 10.1016/j.energy.2019.05.055
    [10] KONG W X, ZHAO F, GUAN H J, ZHAO Y F, ZHANG H S, ZHANG B. Highly adsorptive mesoporous carbon from biomass using molten-salt route[J]. J Mater Sci,2016,51(14):6793−800. doi: 10.1007/s10853-016-9966-8
    [11] NYGÅRD H S, OLSEN E. Effect of salt composition and temperature on the thermal behavior of beech wood in molten salt pyrolysis[J]. Energy Procedia,2014,58:221−8. doi: 10.1016/j.egypro.2014.10.432
    [12] KUDSY M, KUMAZAWA H, SADA E. Pyrolysis of kraft lignin in molten ZnCl2-KCl media with tetralin vapor addition[J]. Can J Chem Eng,1995,73(3):411−5. doi: 10.1002/cjce.5450730319
    [13] AI N, ZENG G N, ZHOU H Y, HE Y T. Co-production of activated carbon and bio-oil from agricultural residues by molten salt pyrolysis[J]. Bioresour,2013,8(2):1551−62.
    [14] 谢迎谱. 生物质熔融碳酸盐热解与气化过程实验研究[D]. 武汉: 华中科技大学, 2020.

    XIE Yin-pu. Experimental study on biomass pyrolysis and gasification with molten carbonates[D]. Wuhan: Huazhong University of Science and Technology, 2020.
    [15] WANG W L, REN X Y, CHANG J M, CAI L P, SHI S Q. Characterization of bio-oils and bio-chars obtained from the catalytic pyrolysis of alkali lignin with metal chlorides[J]. Fuel Process Technol,2015,138:605−11. doi: 10.1016/j.fuproc.2015.06.048
    [16] 杨耀钧, 刁瑞, 王储, 朱锡锋. 不同金属氧化物对重质生物油再裂解的比较性研究[J]. 化工学报,2021,72(11):5820−5830. doi: 10.11949/0438-1157.20210895

    YANG Yao-jun, DIAO Rui, WANG Chu, ZHU Xi-feng. Catalytic effect of different metal oxides on pyrolysis behaviors of heavy bio-oil: A comparative study[J]. CIESC J,2021,72(11):5820−5830. doi: 10.11949/0438-1157.20210895
    [17] LUO Z J, ZHU X F, WANG C, WANG Y S, ZHU X F. Comparative study on the evolution of physicochemical properties of tar obtained from heavy fraction of bio-oil at different heating rates[J]. J Anal Appl Pyrolysis,2020,150:104854.
    [18] SEVILLA M, MOKAYA R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage[J]. Energy Environ Sci,2014,7(4):1250−1280. doi: 10.1039/C3EE43525C
    [19] SHANG H S, LU Y J, ZHAO F, CHAO C, ZHANG B, ZHANG H S. Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium[J]. RSC Adv,2015,5(92):75728−75734. doi: 10.1039/C5RA12406A
    [20] MOLINA S M, RODRÍGUEZ R F. Role of chemical activation in the development of carbon porosity[J]. Colloid Surface A,2004,241(1/3):15−25. doi: 10.1016/j.colsurfa.2004.04.007
    [21] PORADA S, SCHIPPER F, ASLAN M, ANTONIETTI M, PRESSER V, FELLINGER T P. Capacitive deionization using biomass-based microporous salt-templated heteroatom-doped carbons[J]. ChemSusChem,2015,8(11):1867−1874. doi: 10.1002/cssc.201500166
    [22] DÍEZ N, FUERTES A B, SEVILLA M. Molten salt strategies towards carbon materials for energy storage and conversion[J]. Energy Storage Mater,2021,38:50−69. doi: 10.1016/j.ensm.2021.02.048
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  29
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-10-11
  • 录用日期:  2022-10-25
  • 网络出版日期:  2022-10-26
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回