留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

M/ZSM-5 (M=Cu、Mn、Fe、Ce、Ti) 催化氧化甲苯性能研究

彭新宇 刘丽君 沈伯雄 边瑶 苏立超

彭新宇, 刘丽君, 沈伯雄, 边瑶, 苏立超. M/ZSM-5 (M=Cu、Mn、Fe、Ce、Ti) 催化氧化甲苯性能研究[J]. 燃料化学学报(中英文), 2023, 51(6): 841-851. doi: 10.1016/S1872-5813(22)60069-0
引用本文: 彭新宇, 刘丽君, 沈伯雄, 边瑶, 苏立超. M/ZSM-5 (M=Cu、Mn、Fe、Ce、Ti) 催化氧化甲苯性能研究[J]. 燃料化学学报(中英文), 2023, 51(6): 841-851. doi: 10.1016/S1872-5813(22)60069-0
PENG Xin-yu, LIU Li-jun, SHEN Bo-xiong, BIAN Yao, SU Li-chao. Insight into the catalytic oxidation of toluene over M/ZSM-5 (M=Cu, Mn, Fe, Ce, Ti) catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 841-851. doi: 10.1016/S1872-5813(22)60069-0
Citation: PENG Xin-yu, LIU Li-jun, SHEN Bo-xiong, BIAN Yao, SU Li-chao. Insight into the catalytic oxidation of toluene over M/ZSM-5 (M=Cu, Mn, Fe, Ce, Ti) catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 841-851. doi: 10.1016/S1872-5813(22)60069-0

M/ZSM-5 (M=Cu、Mn、Fe、Ce、Ti) 催化氧化甲苯性能研究

doi: 10.1016/S1872-5813(22)60069-0
基金项目: 国家自然科学基金区域联合重点(U20A20302),河北省创新群体(E2021202006),河北省科技专项(20373701D),河北省重大成果转化(21283701Z)和河北省石家庄科技项目(216240117A)资助
详细信息
    通讯作者:

    E-mail:shenbx@hebut.edu.cn

  • 中图分类号: X511

Insight into the catalytic oxidation of toluene over M/ZSM-5 (M=Cu, Mn, Fe, Ce, Ti) catalysts

Funds: The project was supported by the Joint Funds of the National Natural Science Foundation of China (U20A20302), Innovative Group Projects in Hebei Province (E2021202006), Special Project of Science and Technology of Hebei province (20373701D), the Project of Science and Technology in the Shijiazhuang City of Hebei Province (216240117A), and Project of Great Transformation of Scientific and Technical Research in Hebei Province (21283701Z).
  • 摘要: 以ZSM-5分子筛为载体,采用浸渍法负载Cu、Mn、Fe、Ce、Ti制备一系列金属氧化物催化剂,利用SEM、XRD、N2吸附-脱附、XPS、H2-TPR对催化剂的理化性质进行了表征,并考察了催化剂的催化氧化甲苯性能。结果表明,Cu/ZSM-5表面粗糙,金属元素分布均匀,具有较好的孔径结构、良好的低温还原性和丰富的吸附氧物种,且负载量为5%的Cu/ZSM-5表现出优异的甲苯催化活性和最佳的抗硫性,在SO2环境下t90为224 ℃ (GHSV=24000 h−1)。原位红外测试结果表明,甲苯的降解遵循以下途径,甲苯首先被吸附在催化剂表面形成吸附态甲苯,随后在催化剂作用下依次被转化为苯甲醛和苯甲酸,再经过开环反应形成马来酸、羧酸等小分子有机物,最终被氧化为CO2和H2O。
  • FIG. 2389.  FIG. 2389.

    FIG. 2389.  FIG. 2389.

    图  1  (a)ZSM-5、(b)Cu/ZSM-5、(c)Ce/ZSM-5的SEM照片和(d) Cu/ZSM-5 (e) Ce/ZSM-5的EDS mapping照片

    Figure  1  SEM images of (a) ZSM-5, (b) Cu/ZSM-5, (c) Ce/ZSM-5 and EDS mapping images of (d) Cu/ZSM-5, (e) Ce/ZSM-5

    图  2  不同催化剂的XRD谱图

    Figure  2  XRD patterns of different catalysts

    图  3  不同催化剂的N2吸附-脱附等温线

    Figure  3  N2 adsorption/desorption isotherms of different catalysts

    图  4  不同催化剂的XPS O 1s谱图

    Figure  4  O 1s XPS spectra of different catalysts

    图  5  不同催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of different catalysts

    图  6  不同催化剂的(a)甲苯氧化效率和(b)反应速率

    Figure  6  (a) Toluene oxidation and (b) reaction rates of different catalysts

    图  7  不同催化剂在SO2存在下的甲苯氧化效率

    Figure  7  Toluene oxidation of different catalysts with SO2

    图  8  不同金属负载量Cu/ZSM-5的甲苯氧化效率

    Figure  8  Toluene oxidation of Cu/ZSM-5 with different metal loading

    图  9  Cu/ZSM-5在不同甲苯体积分数下的甲苯氧化效率

    Figure  9  Toluene oxidation of Cu/ZSM-5 at different toluene concentrations

    图  10  (a) Cu/ZSM-5、(b) Fe/ZSM-5、(c) Ce/ZSM-5在250 ℃和(d) Cu/ZSM-5不同温度下催化甲苯的原位红外光谱谱图

    Figure  10  In-situ DRIFTS spectra of toluene oxidation over (a) Cu/ZSM-5, (b) Fe/ZSM-5, (c) Ce/ZSM-5 at 250 ℃ and (d) Cu/ZSM-5 at different temperatures

    图  11  甲苯催化氧化机理示意图

    Figure  11  Reaction mechanism of toluene catalytic oxidation

    表  1  不同催化剂的孔结构参数

    Table  1  Structure properties of different catalysts.

    CatalystBET surface area /
    (m2·g−1)
    Micropore volume /
    (cm3·g−1)
    Mesopore volume /
    (cm3·g−1)
    Pore volume /
    (cm3·g−1)
    Average pore diameter /
    nm
    ZSM-5400.70.0850.1750.2612.60
    Cu/ZSM-5276.80.0830.0970.1802.61
    Mn/ZSM-5291.10.0820.1060.1882.58
    Fe/ZSM-5264.90.0890.0770.1662.50
    Ce/ZSM-5294.60.0980.0780.1752.38
    Ti/ZSM-5310.40.0750.1340.2092.69
    下载: 导出CSV

    表  2  不同催化剂中氧物种物质的量比和耗氢量

    Table  2  Molar ratio of oxygen species of different catalysts and H2 consumption

    CatalystCu/ZSM-5Mn/ZSM-5Fe/ZSM-5Ti/ZSM-5Ce/ZSM-5
    Olatt /%3.9816.7512.8127.9815.81
    Oads /%94.2781.3187.1967.1780.87
    Oads/Olatt23.694.856.812.405.12
    H2 consumption
    /(mmol·g−1)
    2.101.442.190.540.15
    下载: 导出CSV
  • [1] LI W B, WANG J X, GONG H. Catalytic combustion of VOCs on non-noble metal catalysts [J]. Catal Today, 2009, 148(1–2): 81–87.
    [2] WANG H, NIE L, LI J, WANG Y, WANG G, WANG J, HAO Z. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries[J]. Chin Sci Bull,2013,58(7):724−730. doi: 10.1007/s11434-012-5345-2
    [3] GUO Y L, WEN M C, LI G Y, AN T C. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review[J]. Appl Catal B: Environ,2021,281:119447. doi: 10.1016/j.apcatb.2020.119447
    [4] ZHAI X, JING F, LI L, JIANG X, ZHANG J, MA J, CHU W. Toluene catalytic oxidation over the layered MOx-δ-MnO2 (M = Pt, Ir, Ag) composites originated from the facile self-driving combustion method[J]. Fuel,2021,283:118888. doi: 10.1016/j.fuel.2020.118888
    [5] XIE Y, ZHANG L, JIANG Y, HAN S, WANG L, MENG X, XIAO F-S. Enhanced catalytic performance of methane combustion over zeolite-supported Pd catalysts with the lanthanum[J]. Catal Today,2021,364:16−20. doi: 10.1016/j.cattod.2019.11.030
    [6] LI J H, XIAO G F, GUO Z Y, LIN B L, HU Y, FU M L, YE D Q. ZSM-5-supported V-Cu bimetallic oxide catalyst for remarkable catalytic oxidation of toluene in coal-fired flue gas[J]. Chem Eng J,2021,419:129675. doi: 10.1016/j.cej.2021.129675
    [7] HU J, LI W B, LIU R F. Highly efficient copper-doped manganese oxide nanorod catalysts derived from CuMnO hierarchical nanowire for catalytic combustion of VOCs[J]. Catal Today,2018,314:147−153. doi: 10.1016/j.cattod.2018.02.009
    [8] LIN L-Y, BAI H. Salt-templated synthesis of Ce/Al catalysts supported on mesoporous silica for acetone oxidation[J]. Appl Catal B: Environ,2014,148-149:366−376. doi: 10.1016/j.apcatb.2013.11.026
    [9] ZHU L, ZHANG L, QU H X, ZHONG Q. A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR[J]. J Mol Catal A: Chem,2015,409:207−215. doi: 10.1016/j.molcata.2015.08.029
    [10] LI J R, ZHANG W P, LI C, XIAO H, HE C. Insight into the catalytic performance and reaction routes for toluene total oxidation over facilely prepared Mn-Cu bimetallic oxide catalysts[J]. Appl Surf Sci,2021,550:149179. doi: 10.1016/j.apsusc.2021.149179
    [11] LIU G, TIAN Y, ZHANG B, WANG L, ZHANG X. Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation[J]. J Hazard Mater,2019,367:568−576. doi: 10.1016/j.jhazmat.2019.01.014
    [12] AZIZ A, KIM S, KIM K S. Fe/ZSM-5 zeolites for organic-pollutant removal in the gas phase: Effect of the iron source and loading[J]. J Environ Chem Eng,2016,4(3):3033−3040. doi: 10.1016/j.jece.2016.06.021
    [13] SUN P, WANG W, DAI X, WENG X, WU Z. Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions[J]. Appl Catal B: Environ,2016,198:389−397. doi: 10.1016/j.apcatb.2016.05.076
    [14] CHENG J, SONG L, WU R, LI S, SUN Y, ZHU H, QIU W, HE H. Promoting effect of microwave irradiation on CeO2-TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. J Rare Earth,2020,38(1):59−69. doi: 10.1016/j.jre.2019.04.014
    [15] LI S M, HAO Q L, ZHAO R Z, LIU D L, DUAN H Z, DOU B J. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts[J]. Chem Eng J,2016,285:536−543. doi: 10.1016/j.cej.2015.09.097
    [16] ZHENG J, CHEN Z, FANG J F, WANG Z, ZUO S F. MCM-41 supported nano-sized CuO-CeO2 for catalytic combustion of chlorobenzene[J]. J Rare Earth,2020,38(9):933−940. doi: 10.1016/j.jre.2019.06.005
    [17] YANG K, SUN Q, XUE F, LIN D. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape[J]. J Hazard Mater,2011,195:124−131. doi: 10.1016/j.jhazmat.2011.08.020
    [18] WANG J, LI J, JIANG C, ZHOU P, ZHANG P, YU J. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Appl Catal B: Environ,2017,204:147−155. doi: 10.1016/j.apcatb.2016.11.036
    [19] LEI J, WANG S, LI J, XU Y, LI S. Different effect of Y (Y = Cu, Mn, Fe, Ni) doping on Co3O4 derived from Co-MOF for toluene catalytic destruction[J]. Chem Eng Sci,2022,251:117436. doi: 10.1016/j.ces.2022.117436
    [20] SHI Y, GUO X, SHI Z, ZHOU R. Transition metal doping effect and high catalytic activity of CeO2-TiO2 for chlorinated VOCs degradation[J]. J Rare Earth,2022,40(5):745−752. doi: 10.1016/j.jre.2021.02.005
    [21] ZHANG S L, ZHONG Q, ZHAO W, LI Y T. Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature[J]. Chem Eng J,2014,253:207−216. doi: 10.1016/j.cej.2014.04.045
    [22] KIM J, JANG E, JEONG Y, BAIK H, CHO S J, KANG C Y, KIM C H, CHOI J. A Cu-impregnated ZSM-5 zeolite for active cold start hydrocarbon removal: Cation-type-dependent Cu species and their synergetic HC adsorption/oxidation functions[J]. Chem Eng J,2022,430:132552. doi: 10.1016/j.cej.2021.132552
    [23] XUE H, GUO X, MENG T, MAO D, MA Z. Poisoning effect of K with respect to Cu/ZSM-5 used for NO reduction[J]. Colloid Interfac Sci,2021,44:100465. doi: 10.1016/j.colcom.2021.100465
    [24] YASHNIK S A, TARAN O P, SUROVTSOVA T A, AYUSHEEV A B, PARMON V N. Cu- and Fe-substituted ZSM-5 zeolite as an effective catalyst for wet peroxide oxidation of Rhodamine 6 G dye[J]. J Environ Chem Eng,2022,10(3):107950. doi: 10.1016/j.jece.2022.107950
    [25] ZHA K, FENG C, HAN L, LI H, YAN T, KUBOON S, SHI L, ZHANG D. Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NOx: XAFS and in situ DRIFTs study[J]. Chem Eng J,2020,381:122764. doi: 10.1016/j.cej.2019.122764
    [26] WU Y S, FENG R, SONG C J, XING S T, GAO Y Z, MA Z C. Effect of reducing agent on the structure and activity of manganese oxide octahedral molecular sieve (OMS-2) in catalytic combustion of o-xylene[J]. Catal Today,2017,281:500−506. doi: 10.1016/j.cattod.2016.05.024
    [27] MA Y, LI W, WANG H, CHEN J, WEN J, XU S, TIAN X, GAO L, HOU Z, ZHANG Q, YANG H. Enhanced performance of iron-cerium NO reduction catalysts by sulfuric acid treatment: The synergistic effect of surface acidity and redox capacity[J]. Appl Cacal A: Gen,2021,621:118200. doi: 10.1016/j.apcata.2021.118200
    [28] CAO X, LU J, ZHENG X, HE D, ZHU W, ZHAO Y, ZHANG W, TIAN R, LUO Y. Regulation of the reaction pathway to design the high sulfur/coke-tolerant Ce-based catalysts for decomposing sulfur-containing VOCs[J]. Chem Eng J,2022,429:132473. doi: 10.1016/j.cej.2021.132473
    [29] WANG J, GUO X, SHI Y, ZHOU R. Synergistic effect of Pt nanoparticles and micro-mesoporous ZSM-5 in VOCs low-temperature removal[J]. J Environ Sci,2021,107:87−97. doi: 10.1016/j.jes.2021.01.033
    [30] YAN Y, WANG L, ZHANG H P. Catalytic combustion of volatile organic compounds over Co/ZSM-5 coated on stainless steel fibers[J]. Chem Eng J,2014,255:195−204. doi: 10.1016/j.cej.2014.05.141
    [31] ZHANG C, HUANG H, LI G, WANG L, SONG L, LI X. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts[J]. Catal Today,2019,327:374−381. doi: 10.1016/j.cattod.2018.03.019
    [32] ZHANG Z X, GONG Y, XU J W, ZHANG Y, XIAO Q Y, XI R, XU X L, FANG X Z, WANG X. Dissecting La2Ce2O7 catalyst to unravel the origin of the surface active sites devoting to its performance for oxidative coupling of methane (OCM)[J]. Catal Today,2022,400-401:73−81. doi: 10.1016/j.cattod.2021.11.012
    [33] WANG C P, WANG Z, MAO S J, CHEN Z R, WANG Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts[J]. Chin J Catal,2022,43(4):928−955. doi: 10.1016/S1872-2067(21)63924-4
    [34] VELLINGIRI K, KUMAR P, DEEP A, KIM K-H. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure[J]. Chem Eng J,2017,307:1116−1126. doi: 10.1016/j.cej.2016.09.012
    [35] PAN H, CHEN Z, MA M, GUO T, LING X, ZHENG Y, HE C, CHEN J. Mutual inhibition mechanism of simultaneous catalytic removal of NO and toluene on Mn-based catalysts[J]. J Colloid Interface Sci,2022,607:1189−1200. doi: 10.1016/j.jcis.2021.09.110
    [36] WANG Z, XIE K, ZHENG J, ZUO S. Studies of sulfur poisoning process via ammonium sulfate on MnO2/γ-Al2O3 catalyst for catalytic combustion of toluene[J]. Appl Catal B: Environ,2021,298:120595. doi: 10.1016/j.apcatb.2021.120595
    [37] HU P, WENG Q, LI D, LV T, WANG S, ZHUO Y. Effects of O2, SO2, H2O and CO2 on As2O3 adsorption by gamma-Al2O3 based on DFT analysis[J]. J Hazard Mater,2021,403:123866. doi: 10.1016/j.jhazmat.2020.123866
    [38] HOU Z, DAI L, LIU Y, DENG J, JING L, PEI W, GAO R, FENG Y, DAI H. Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium-cobalt catalysts for benzene oxidation[J]. Appl Catal B: Environ,2021,285:119844. doi: 10.1016/j.apcatb.2020.119844
    [39] LIU H L, YE C, XU Y S, WANG Q S. Effect of activation conditions and iron loading content on the catalytic cracking of toluene by biochar[J]. Energy,2022,247:123409. doi: 10.1016/j.energy.2022.123409
    [40] AHMADI M, HAGHIGHI M, KAHFOROUSHAN D. Influence of active phase composition (Mn, Ni, MnxNi10−x ) on catalytic properties and performance of clinoptilolite supported nanocatalysts synthesized using ultrasound energy toward abatement of toluene from polluted air[J]. Process Saf Environ Prot,2017,106:294−308. doi: 10.1016/j.psep.2016.06.029
    [41] WANG Z, YANG H, LIU R, XIE S, LIU Y, DAI H, HUANG H, DENG J. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst[J]. J Hazard Mater,2020,392:122258. doi: 10.1016/j.jhazmat.2020.122258
    [42] XU W C, WANG N, CHEN Y D, CHEN J D, XU X X, YU L, CHEN L M, WU J L, FU M L, ZHU A M, YE D Q. In situ FT-IR study and evaluation of toluene abatement in different plasma catalytic systems over metal oxides loaded gamma-AL(2)O(3)[J]. Catal Commun,2016,84:61−66. doi: 10.1016/j.catcom.2016.06.004
    [43] WEI G C, ZHANG Q L, ZHANG D H, WANG J, TANG T, WANG H M, LIU X, SONG Z X, NING P. The influence of annealing temperature on copper-manganese catalyst towards the catalytic combustion of toluene: The mechanism study[J]. Appl Surf Sci,2019,497:143777. doi: 10.1016/j.apsusc.2019.143777
    [44] WANG Z W, MA P J, ZHENG K, WANG C, LIU Y X, DAI H X, WANG C C, HSI H C, DENG J G. Size effect, mutual inhibition and oxidation mechanism of the catalytic removal of a toluene and acetone mixture over TiO2 nanosheet-supported Pt nanocatalysts[J]. Appl Catal B: Environ,2020,274:118963. doi: 10.1016/j.apcatb.2020.118963
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  220
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-10-16
  • 录用日期:  2022-10-18
  • 网络出版日期:  2022-10-31
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回