留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波辅助合成ZnO-TiO2及其可见光催化脱硝活性

王淑勤 李晓雪 李丹

王淑勤, 李晓雪, 李丹. 微波辅助合成ZnO-TiO2及其可见光催化脱硝活性[J]. 燃料化学学报(中英文), 2023, 51(5): 589-597. doi: 10.1016/S1872-5813(22)60070-7
引用本文: 王淑勤, 李晓雪, 李丹. 微波辅助合成ZnO-TiO2及其可见光催化脱硝活性[J]. 燃料化学学报(中英文), 2023, 51(5): 589-597. doi: 10.1016/S1872-5813(22)60070-7
WANG Shu-qin, LI Xiao-xue, LI Dan. Microwave assisted synthesis of ZnO-TiO2 and its visible light catalytic denitrification activity[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 589-597. doi: 10.1016/S1872-5813(22)60070-7
Citation: WANG Shu-qin, LI Xiao-xue, LI Dan. Microwave assisted synthesis of ZnO-TiO2 and its visible light catalytic denitrification activity[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 589-597. doi: 10.1016/S1872-5813(22)60070-7

微波辅助合成ZnO-TiO2及其可见光催化脱硝活性

doi: 10.1016/S1872-5813(22)60070-7
基金项目: 国家重点研发计划(2018YFB060420103)和河北省自然科学基金(E2014502111 )资助
详细信息
    通讯作者:

    E-mail: wsqhg@163.com

  • 中图分类号: X511

Microwave assisted synthesis of ZnO-TiO2 and its visible light catalytic denitrification activity

Funds: The project was supported by the National Basic Research Program of China (2018YFB060420103) and National Natural Science Foundation of HeBei Province (E2014502111)
  • 摘要: 通过对比水热溶胶凝胶法与微波辅助溶胶凝胶法制备的复合TiO2的光催化性能,最终采用耗时较短且结晶度更好的微波辅助溶胶凝胶法制备了不同复合比例的ZnO-TiO2材料。ZnO-TiO2复合材料比表面积和孔容孔径尺寸较TiO2材料均有明显增大,表面酸性更强,能带结构有利于电子空穴的高效分离,催化还原活性与选择性更强。经光催化脱硝实验优化出ZnO与TiO2最佳复合比为0.2,对于初始质量浓度为6.83 mg/m3的NOx,在65 W节能灯照射的光源条件下,可见光催化脱除效率高达85%,NOx质量浓度提高至13.67 mg/m3,在通入氨氮比为1∶1的NH3后,脱硝效率高达96%,比纯TiO2的提高43%,质量浓度适用范围较前期研究拓宽近六倍。机理分析认为,整个反应可分成吸附与光催化两个部分,其中,吸附是该反应的速控步骤,NO在吸附氧的作用下被氧化为NO2,光生电子能够将NO2进一步还原为N2,通入NH3后,NH3与光生电子共同作用,NOx脱除效率得以提高。
  • FIG. 2288.  FIG. 2288.

    FIG. 2288.  FIG. 2288.

    图  1  ZnO-TiO2光催化脱硝反应流程示意图

    Figure  1  ZnO-TiO2 photocatalytic denitration process

    图  2  不同样品的X射线衍射谱图

    Figure  2  X-ray diffraction patterns of different samples

    图  3  TiO2、复合0.2-ZnO-TiO2的N2吸附-脱附曲线(a)及孔径分布(b)

    Figure  3  N2 adsorption desorption curve (a) and pore size distribution diagram (b) of TiO2 and composite 0.2-ZnO-TiO2

    图  4  TiO2和0.2-ZnO-TiO2的UV-vis谱图(a)和光子能谱图(b)

    Figure  4  UV-vis spectra (a) and photon energy spectra (b) of TiO2 and 0.2-ZnO-TiO2

    图  5  不同样品的光电流测试

    Figure  5  Photocurrent spectra of different samples

    图  6  不同催化剂的NH3-TPD谱图

    Figure  6  NH3-TPD test results of different catalysts

    图  7  不同光催化剂的脱硝性能

    Figure  7  Denitration performance of different photocatalysts

    图  8  ZnO复合比例对光助脱硝效率的影响

    Figure  8  Effect of ZnO composite ratio on the efficiency of photo assisted denitrification

    图  9  氨氮比对光催化脱硝效率的影响

    Figure  9  Effect of ammonia nitrogen ratio on photocatalytic denitrification efficiency

    图  10  H2O(a)、SO2(b)对光助脱硝效率的影响

    Figure  10  Effect of H2O (a) and SO2 (b) on the efficiency of photo assisted denitrification

    图  11  光催化脱除量时间图(a)和反应速率图(b)

    Figure  11  Photo catalytic removal time chart (a) and reaction rate chart (b)

    图  12  不同光催化剂一级动力学拟合图

    Figure  12  First order kinetic fitting diagram of different catalyst

    图  13  不同初始质量浓度下无氨气(a)存在及有氨气(b)存在的一级动力学拟合图

    Figure  13  First order kinetics fitting diagram without ammonia (a) and with ammonia (b) at different initial concentrations

    表  1  不同样品的BET分析

    Table  1  Bet analysis parameters of different samples

    Sample typeSpecific surface area /(m2·g−1Average aperture /nmPore volume /(cm3·g−1
    TiO2 (Microwave method)89.5420.870.19
    TiO2 (Hydrothermal method)92.1021.090.25
    ZnO (Microwave method)90.5417.000.13
    0.2-ZnO-TiO2126.4225.880.33
    下载: 导出CSV
  • [1] HAN L, CAI S, GAO M, HASEGAWA J Y, WANG P, ZHANG J, SHI L, ZHANG D. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects[J]. Chem Rev,2019,119(19):10916−10976. doi: 10.1021/acs.chemrev.9b00202
    [2] PERUMAL S K, KAISARE N, KUMMARI S K, AGHALAYAM P. Low-temperature NH3-SCR of NO over robust RuNi/Al-SBA-15 catalysts: Effect of Ru loading[J]. J Environ Chem Eng,2022,10(5):108288. doi: 10.1016/j.jece.2022.108288
    [3] SHANG X, HU G, HE C, ZHAO J, ZHANG F, XU Y, ZHANG Y, LI J, CHEN J. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J]. J Ind Eng Chem,2012,18(1):513−519. doi: 10.1016/j.jiec.2011.11.070
    [4] QI C, BAO W, WANG L, LI H, WU W. Study of the V2O5-WO3/TiO2 catalyst synthesized from waste catalyst on selective catalytic reduction of NOx by NH3[J]. Catalysts,2017,7(12):.110−110. doi: 10.3390/catal7040110
    [5] ZHANG F, CHENG Z, KANG L, CUI L, LIU W, XU X, HOU G, YANG H. A novel preparation of Ag-doped TiO2 nanofibers with enhanced stability of photocatalytic activity[J]. RSC Adv,2015,5(41):32088−32091. doi: 10.1039/C5RA01353D
    [6] PETERNEL I T, KOPRIVANAC N, BOZIC A M, KUSIC H M. Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution[J]. J Hazard Mater,2007,148(1/2):477−484.
    [7] MOFOKENG S J, KUMAR V, KROON R E, NTWAEABORWA O M. Structure and optical properties of Dy3+ activated sol-gel ZnO-TiO2 nanocomposites[J]. J Alloys Compd,2017,711:121−131. doi: 10.1016/j.jallcom.2017.03.345
    [8] HAN J, LIU Y, SINGHAL N, WANG L, GAO W. Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation[J]. Chem Eng J,2012,213:150−162. doi: 10.1016/j.cej.2012.09.066
    [9] TASSALIT D, CHEKIR N, BENHABILES O, BENTAHAR F, LAOUFI N A. Photocatalytic Degradation of Tylosin and Spiramycin in Water by using TiO2 and ZnO Catalysts under UV Radiation[M]. Energy, Transportation and Global Warming. City, 2016: 695–706.
    [10] PRASANNALAKSHMI P, SHANMUGAM N. Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis[J]. Mater Sci Semicond Process,2017,61:114−124. doi: 10.1016/j.mssp.2017.01.008
    [11] ZHANG P, WANG T, CHANG X, GONG J. Effective charge carrier utilization in photocatalytic conversions[J]. Acc Chem Res,2016,49(5):911−921. doi: 10.1021/acs.accounts.6b00036
    [12] SHENG F, XU C, JIN Z, GUO J, FANG S, SHI Z, WANG J. Simulation on Field Enhanced Electron Transfer between the Interface of ZnO-Ag Nanocomposite[J]. J Phys Chem C,2013,117(36):18627−18633. doi: 10.1021/jp405186c
    [13] SARKAR A, SINGH A K, KHAN G G, SARKAR D, MANDAL K. TiO2/ZnO core/shell nano-heterostructure arrays as photo-electrodes with enhanced visible light photoelectrochemical performance[J]. RSC Adv,2014,4(98):55629−55634. doi: 10.1039/C4RA09456E
    [14] SABZEHMEIDANI M M, KARIMI H, GHAEDI M. Sonophotocatalytic treatment of rhodamine B using visible-light-driven CeO2/Ag2CrO4 composite in a batch mode based on ribbon-like CeO2 nanofibers via electrospinning[J]. Environ Sci Pollut Res Int,2019,26(8):8050−8068. doi: 10.1007/s11356-019-04253-8
    [15] ZHANG L, LI H, LIU Y, TIAN Z, YANG B, SUN Z, YAN S. Adsorption-photocatalytic degradation of methyl orange over a facile one-step hydrothermally synthesized TiO2/ZnO-NH2-RGO nanocomposite[J]. RSC Adv,2014,4(89):48703−48711. doi: 10.1039/C4RA09227A
    [16] 王淑勤, 武金锦, 杜志辉. Co-Ce共掺杂对TiO2催化剂室温可见光催化脱硝性能的影响[J]. 燃料化学学报,2019,47(3):361−369.

    WANG Shu-qin, WU Jin-jin, DU Zhi-hui. Study on selective catalytic reduction denitration performance of Ce-Co co-doped TiO2 catalyst[J]. J Fuel Chem Technol,2019,47(3):361−369.
    [17] 王淑勤, 李金梦, 刘文博. 氟钒锰共掺对TiO2柱撑膨润土光催化脱硝性能的影响[J]. 燃料化学学报,2020,48(9):1131−1139. doi: 10.3969/j.issn.0253-2409.2020.09.013

    WANG Shu-qin, LI Jin-meng, LIU Wen-bo. Effect of F, V and Mn co-doping on the catalytic performance of TiO2-pillared bentonite in the photocatalytic denitration[J]. J Fuel Chem Technol,2020,48(9):1131−1139. doi: 10.3969/j.issn.0253-2409.2020.09.013
    [18] DELSOUZ KHAKI M R, SHAFEEYAN M S, RAMAN A A A, DAUD W M A W. Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation[J]. J Mol Liq,2018,258:354−365. doi: 10.1016/j.molliq.2017.11.030
    [19] HARIHARAN C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited[J]. Appl Catal A: Gen,2006,304:55−61. doi: 10.1016/j.apcata.2006.02.020
    [20] KWIATKOWSKI M, BEZVERKHYY I, SKOMPSKA M. ZnO nanorods covered with a TiO2 layer: Simple sol-gel preparation, and optical, photocatalytic and photoelectrochemical properties[J]. J Mater Chem A,2015,3(24):12748−12760. doi: 10.1039/C5TA01087J
    [21] 陈玉婷, 朱雷, 肖扬帆. 镧改性ZnO-TiO2光催化氧化活性染料的实验研究[J]. 工业安全与环保,2015,41(1):4−7 + 32. doi: 10.3969/j.issn.1001-425X.2015.01.002

    CHEN Yu-ting, ZHU Lei, XIAO Yang-fan. Experimental study on lanthanum modified ZnO-TiO2 photocatalytic oxidation of reactive dyes[J]. Ind Safety Environ Prot,2015,41(1):4−7 + 32. doi: 10.3969/j.issn.1001-425X.2015.01.002
    [22] CHEN D, ZHANG H, HU S, LI J H. Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites[J]. J Phys Chem C,2011,112:117−122.
    [23] ZHAO Y, HAN J, SHAO Y, FENG Y. Simultaneous SO2 and NO removal from flue gas based on TiO2 photocatalytic oxidation[J]. Environ Technol,2009,30(14):1555−1563. doi: 10.1080/09593330903313786
    [24] 刘磊. SiO2基宽光谱光热转化相变储能纳米胶囊制备及性能研究[D]. 北京: 北京科技大学, 2022.

    LIU Lei. Preparation and characterization of SiO2-based wide spectrum photothermal conversion phase-change energy storage nanocapsules [D]. Beijing: University of Science and Technology Beijing , 2022.
    [25] SHANMUGAM M, ALSALME A, ALGHAMDI A, JAYAVEL R. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants[J]. J Photochem Photobiol B,2016,163:216−223. doi: 10.1016/j.jphotobiol.2016.08.029
    [26] XIE C, YANG S, LI B, WANG H, SHI J W, LI G, NIU C. C-doped mesoporous anatase TiO2 comprising 10nm crystallites[J]. J Colloid Interface Sci,2016,476:1−8. doi: 10.1016/j.jcis.2016.01.080
    [27] SUWARNKAR M B, DHABBE R S, KADAM A N, GARADKAR K M. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method[J]. Ceram Int,2014,40(4):5489−5496. doi: 10.1016/j.ceramint.2013.10.137
    [28] 莫晓朋. 溶胶凝胶–微波法合成LiTi2(PO4)3及其电化学性能研究[D]. 郑州: 郑州大学, 2012.

    MO Xiao-ming. Study on electrochemical properties of LiTi2(PO4)3 synthesized by sol-gel and microwave method[D]. Zhengzhou: Zhengzhou University , 2012.
    [29] 刘月, 余林, 魏志钢, 潘湛昌, 邹燕娣, 谢英豪. 稀土金属掺杂对锐钛矿型TiO2光催化活性影响的理论和实验研究[J]. 高等学校化学学报,2013,34(2):434−440. doi: 10.7503/cjcu20120487

    LIU Yue, YU Lin, WEI Zhi-gang, PAN Zhan-chang, ZOU Yan-di, XIE Ying-hao. Theoretical and experimental studies on photocatalytic potential of rare earth doped anatase TiO2[J]. Chem J Chin Univ,2013,34(2):434−440. doi: 10.7503/cjcu20120487
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  52
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-25
  • 修回日期:  2022-10-24
  • 录用日期:  2022-11-04
  • 网络出版日期:  2022-11-08
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回