留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同方法制备的Cu-Mn-La-Zr催化剂上二氧化碳加氢制甲醇反应机理研究

王世强 杨金海 赵宁 肖福魁

王世强, 杨金海, 赵宁, 肖福魁. 不同方法制备的Cu-Mn-La-Zr催化剂上二氧化碳加氢制甲醇反应机理研究[J]. 燃料化学学报(中英文), 2023, 51(7): 970-976. doi: 10.1016/S1872-5813(22)60079-3
引用本文: 王世强, 杨金海, 赵宁, 肖福魁. 不同方法制备的Cu-Mn-La-Zr催化剂上二氧化碳加氢制甲醇反应机理研究[J]. 燃料化学学报(中英文), 2023, 51(7): 970-976. doi: 10.1016/S1872-5813(22)60079-3
WANG Shi-qiang, YANG Jin-hai, ZHAO Ning, XIAO Fu-kui. Mechanistic study on the hydrogenation of CO2 to methanol over Cu-Mn-La-Zr catalysts prepared by different methods[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 970-976. doi: 10.1016/S1872-5813(22)60079-3
Citation: WANG Shi-qiang, YANG Jin-hai, ZHAO Ning, XIAO Fu-kui. Mechanistic study on the hydrogenation of CO2 to methanol over Cu-Mn-La-Zr catalysts prepared by different methods[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 970-976. doi: 10.1016/S1872-5813(22)60079-3

不同方法制备的Cu-Mn-La-Zr催化剂上二氧化碳加氢制甲醇反应机理研究

doi: 10.1016/S1872-5813(22)60079-3
详细信息
    通讯作者:

    E-mail: zhaoning@sxicc.ac.cn

    xiaofk@sxicc.ac.cn

  • 中图分类号: O643.36;O623.411

Mechanistic study on the hydrogenation of CO2 to methanol over Cu-Mn-La-Zr catalysts prepared by different methods

  • 摘要: 通过原位红外和H2-TPD表征,比较研究了由共沉淀法(CMLZ-CP)、溶胶凝胶法(CMLZ-S)、水热法(CMLZ-H)制备的Cu-Mn-La-Zr催化剂上二氧化碳加氢制甲醇的反应历程。结果表明,催化剂表面羟基对二氧化碳加氢制甲醇反应有一定的促进作用,并且催化剂上的二氧化碳加氢反应均遵循甲酸盐(HCOO*)和羧酸盐(COOH*)路径。CMLZ-CP和CMLZ-H催化剂更倾向于羧酸盐路径,而CMLZ-S催化剂更倾向于甲酸盐路径。CMLZ-CP催化剂有最强的H2活化能力,从而表现出最高的CO2转化率和甲醇产率,而CMLZ-H催化剂有更高的中强碱性位点和氧缺陷占比,使得中间物种更倾向于加氢合成甲醇,从而表现出最高的甲醇选择性。
  • FIG. 2470.  FIG. 2470.

    FIG. 2470.  FIG. 2470.

    图  1  共沉淀法制备的Cu-Mn-La-Zr催化剂CO2吸附(a)和吸附过程中羟基浓度随时间变化的原位红外光谱谱图(b)

    Figure  1  In-situ DRIFT spectra of CO2 adsorption (a) and consumption of hydroxyl groups during adsorption with time (b) of Cu-Mn-La-Zr catalysts prepared by co-precipitation method

    图  2  不同方法制备的CMLZ-CP(a)、CMLZ-S(b)、CMLZ-H(c)催化剂在混合气下反应中间物种浓度随时间变化的原位红外光谱谱图

    Figure  2  In-situ DRIFT spectra in the range of 1000–2200 cm−1 of the adsorption of CO2 and H2 mixture (CO2/H2=1∶3) over the time at 260 ℃ on the reduced CMLZ-CP (a), CMLZ-S (b), and CMLZ-H (c) catalysts

    图  3  不同方法制备的CMLZ-CP(a)、CMLZ-S(b)、CMLZ-H(c)催化剂在混合气下反应中间物种浓度随时间变化的原位红外光谱谱图

    Figure  3  In-situ DRIFT spectra in the range of 2700–3000 cm−1 of the adsorption of CO2 and H2 mixture (CO2/H2=1∶3) over the time at 260 ℃ on the reduced CMLZ-CP (a), CMLZ-S (b), and CMLZ-H (c) catalysts

    图  4  不同方法制备的CMLZ-CP、CMLZ-S、CMLZ-H催化剂在300 ℃还原后的H2-TPD谱图(a)和H2脱附量(b)

    Figure  4  H2-TPD profiles (a) and H2 desorption quantity (b) of the CMLZ-CP, CMLZ-S and CMLZ-H catalysts prepared by different methods after reduction at 300 ℃

    图  5  催化剂的反应机理示意图

    Figure  5  Reaction mechanism for the CO2 hydrogenation to methanol over the Cu-Mn-La-Zr catalysts

  • [1] SHARMA S K, BANERJEE A, PAUL B, PODDAR M K, SASAKI T, SAMANTA C, BAL R. Combined experimental and computational study to unravel the factors of the Cu/TiO2 catalyst for CO2 hydrogenation to methanol[J]. J CO2 Util,2021,50:101576. doi: 10.1016/j.jcou.2021.101576
    [2] GRABOWSKI R, SłOCZYŃSKI J, ŚLIWA M, MUCHA D, SOCHA R P, LACHOWSKA M, SKRZYPEK J. Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2 catalysts in the hydrogenation of CO2 to methanol[J]. ACS Catal,2011,1:266−278. doi: 10.1021/cs100033v
    [3] VARVOUTIS G, KARAKOULIA S A, LYKAKI M, STEFA S, BINAS V, MARNELLOS G E, KONSOLAKIS M. Support-induced modifications on the CO2 hydrogenation performance of Ni/CeO2: The effect of ZnO doping on CeO2 nanorods[J]. J CO2 Util,2022,61:102057. doi: 10.1016/j.jcou.2022.102057
    [4] ALVAREZ A, BANSODE A, URAKAWA A, BAVYKINA A V, WEZENDONK T A, MAKKEE M, GASCON J, KAPTEIJN F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chem Rev,2017,117:9804−9838. doi: 10.1021/acs.chemrev.6b00816
    [5] DU X L, JIANG Z, SU D S, WANG J Q. Research progress on the indirect hydrogenation of carbon dioxide to methanol[J]. ChemSusChem,2016,9:322−332. doi: 10.1002/cssc.201501013
    [6] OLAH G A, PRAKASH G K S, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future[J]. J Am Chem Soc,2011,133:12881−12898. doi: 10.1021/ja202642y
    [7] LIU S, CUTY CLEMENTE E R, HU T, WEI Y. Study of spark ignition engine fueled with methanol/gasoline fuel blends[J]. Appl Therm Eng,2007,27:1904−1910. doi: 10.1016/j.applthermaleng.2006.12.024
    [8] ZHU J, CANNIZZARO F, LIU L, ZHANG H, KOSINOV N, FILOT I A W, RABEAH J, BRUCKNER A, HENSEN E J M. Ni-In synergy in CO2 hydrogenation to methanol[J]. ACS Catal,2021,11:11371−11384. doi: 10.1021/acscatal.1c03170
    [9] WANG Q, DOMEN K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies[J]. Chem Rev,2020,120:919−985. doi: 10.1021/acs.chemrev.9b00201
    [10] GAO P, LI F, ZHAO N, XIAO F, WEI W, ZHONG L, SUN Y. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A: Gen,2013,468:442−452. doi: 10.1016/j.apcata.2013.09.026
    [11] LI K, CHEN J G. CO2 Hydrogenation to methanol over ZrO2-containing catalysts: Insights into ZrO2 induced synergy[J]. ACS Catal,2019,9:7840−7861. doi: 10.1021/acscatal.9b01943
    [12] DONG X, LI F, ZHAO N, TAN Y, WANG J, XIAO F. CO2 hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction[J]. Chin J Catal,2017,38:717−725. doi: 10.1016/S1872-2067(17)62793-1
    [13] 王彦, 王晓月, 曹瑞文, 班红艳, 李聪明. 二氧化碳加氢制甲醇反应机理研究进展[J]. 辽宁石油化工大学学报,2020,40:11−20.

    WANG Yan, WANG Xiao-yue, CAO Rui-wen, BAN Hong-yan, LI Cong-ming. Research progress of reaction mechanism of carbon dioxide hydrogenation to methanol[J]. J Liaoning Petrochem Univ,2020,40:11−20.
    [14] KATTEL S, RAMÍREZ P J, CHEN J G, RODRIGUEZ J A, LIU P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science,2017,355:1296−1299. doi: 10.1126/science.aal3573
    [15] ZHONG J, YANG X, WU Z, LIANG B, HUANG Y, ZHANG T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem Soc Rev,2020,49:1385−1413. doi: 10.1039/C9CS00614A
    [16] ZHAO H, YU R, MA S, XU K, CHEN Y, JIANG K, FANG Y, ZHU C, LIU X, TANG Y, WU L, WU Y, JIANG Q, HE P, LIU Z, TAN L. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation[J]. Nat Catal,2022,5:818−831. doi: 10.1038/s41929-022-00840-0
    [17] CHEN K, FANG H, WU S, LIU X, ZHENG J, ZHOU S, DUAN X, ZHUANG Y, TSANG S C E, YUAN Y, CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu-LaOx interfaces[J]. Appl Catal B: Environ, 2019, 251: 119-129.
    [18] GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catal,2011,1:365−384. doi: 10.1021/cs200055d
    [19] CATLOW C R A, FRENCH S A, SOKOL A A, THOMAS J M. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts[J]. Philos Trans A Math Phys Eng Sci,2005,363:913−936.
    [20] LEE K, ANJUM U, ARAÚJO T P, MONDELLI C, HE Q, FURUKAWA S, PÉREZ-RAMÍREZ J, KOZLOV S M, YAN N. Atomic Pd-promoted ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol[J]. Appl Catal B: Environ,2022,304:120994. doi: 10.1016/j.apcatb.2021.120994
    [21] KATTEL S, YAN B, YANG Y, CHEN J G, LIU P. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. J Am Chem Soc,2016,138:12440−12450. doi: 10.1021/jacs.6b05791
    [22] ZHAO Y -F, YANG Y, MIMS C, PEDEN C H F, LI J, MEI D. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O[J]. J Catal,2011,281:199−211. doi: 10.1016/j.jcat.2011.04.012
    [23] WANG S, YANG J, WANG S, XIAO F, ZHAO N. Effect of preparation method on the performance of Cu-Mn-(La)-Zr catalysts for CO2 hydrogenation to methanol[J]. ChemCatChem, Accepted Manuscript, 2022.https://doi.org/10.1002/cctc.202200957
    [24] WANG W, QU Z, SONG L, FU Q. Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO2 hydrogenation to methanol using high pressure in situ DRIFTS[J]. J Catal,2020,382:129−140. doi: 10.1016/j.jcat.2019.12.022
    [25] LI N, WANG W, SONG L, WANG H, FU Q, QU Z. CO2 hydrogenation to methanol promoted by Cu and metastable tetragonal CexZryOz interface[J]. J Energy Chem,2022,68:771−779. doi: 10.1016/j.jechem.2021.12.053
    [26] GRAF P O, DE VLIEGER D J M, MOJET B L, LEFFERTS L. New insights in reactivity of hydroxyl groups in water gas shift reaction on Pt/ZrO2[J]. J Catal,2009,262:181−187. doi: 10.1016/j.jcat.2008.12.015
    [27] 王威威, 铜铈锆催化剂在二氧化碳加氢合成甲醇反应中的催化性能与反应机理的研究[D]. 大连: 大连理工大学, 2020.

    WANG Wei-wei, Study on catalytic performance and reaction mechanism of CO2 hydrogenation to CH3OH over CuO/CexZryOz catalyst[D]. Dalian: Dalian University of Technology, 2020.
    [28] YE J, LIU C, MEI D, GE Q. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study[J]. ACS Catal,2013,3:1296−1306. doi: 10.1021/cs400132a
    [29] BAO J, YANG G, YONEYAMA Y, TSUBAKI N. Significant advances in C1 catalysis: Highly efficient catalysts and catalytic reactions[J]. ACS Catal,2019,9:3026−3053. doi: 10.1021/acscatal.8b03924
    [30] FAN Q, LI S, ZHANG L, WANG P, WANG S. Regulation of product distribution in CO2 hydrogenation by modifying Ni/CeO2 catalysts[J]. J Catal,2022,414:53−63. doi: 10.1016/j.jcat.2022.08.028
    [31] RODRIGUEZ J A, EVANS J, FERIA L, VIDAL A B, LIU P, NAKAMURA K, ILLAS F. CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane[J]. J Catal,2013,307:162−169. doi: 10.1016/j.jcat.2013.07.023
    [32] TAGAWA T, NOMURA N, SHIMAKAGE M, GOTO S. Effect of supports on copper-catalysts for methanol synthesis from CO2 + H2[J]. Res Chem Intermed,1995,21:193−202. doi: 10.1163/156856795X00170
    [33] GUO X, MAO D, LU G, WANG S, WU G. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation[J]. J Mol Catal A: Chem,2011,345:60−68. doi: 10.1016/j.molcata.2011.05.019
    [34] ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRUSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A: Gen,2008,350:16−23. doi: 10.1016/j.apcata.2008.07.028
    [35] SHA F, TANG C, TANG S, WANG Q, HAN Z, WANG J, LI C. The promoting role of Ga in ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol[J]. J Catal,2021,404:383−392. doi: 10.1016/j.jcat.2021.09.030
  • 加载中
图(6)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  146
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2022-12-14
  • 录用日期:  2022-12-14
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回