留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution

LUO Jia-bing WANG Xing-zhao ZHANG Jun ZHOU Yan

罗佳冰, 王兴兆, 张军, 周炎. 锚定在中空碳纳米笼上的Fe掺杂Co3O4用于高效电催化析氧[J]. 燃料化学学报(中英文), 2023, 51(5): 571-580. doi: 10.1016/S1872-5813(22)60080-X
引用本文: 罗佳冰, 王兴兆, 张军, 周炎. 锚定在中空碳纳米笼上的Fe掺杂Co3O4用于高效电催化析氧[J]. 燃料化学学报(中英文), 2023, 51(5): 571-580. doi: 10.1016/S1872-5813(22)60080-X
LUO Jia-bing, WANG Xing-zhao, ZHANG Jun, ZHOU Yan. Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 571-580. doi: 10.1016/S1872-5813(22)60080-X
Citation: LUO Jia-bing, WANG Xing-zhao, ZHANG Jun, ZHOU Yan. Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 571-580. doi: 10.1016/S1872-5813(22)60080-X

锚定在中空碳纳米笼上的Fe掺杂Co3O4用于高效电催化析氧

doi: 10.1016/S1872-5813(22)60080-X
详细信息
  • 中图分类号: O643.32

Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution

Funds: The project was supported by the National Natural Science Foundation of China (21805308), the Taishan Scholar Project of Shandong province, the Key Research and Development Program of Shandong Province (2019GSF109075), the Fundamental Research Funds for the Central Universities (19CX05001A).
More Information
  • 摘要: 本研究采用[Fe(CN)6]3−阴离子交换2-甲基咪唑再于空气气氛下退火衍生的策略,制备了一种负载在氮掺杂中空纳米笼碳骨架上的Fe掺杂Co3O4电催化剂(Fe-Co3O4/NC),用于电催化OER。XRD和HRTEM表征证实了Fe掺入Co3O4的晶格中。XPS表征明确了Fe引入后Co价态升高,这是基于Co2+/Co3+ 和Fe3+的价电子构型诱导的电子由Co2+/Co3+向Fe3+的转移,这会促使Co位点在OER过程中衍生为CoOOH活性物种,作为真正的电催化活性中心,这也被OER稳定性测试后的HRTEM和XPS表征所证实。电化学性能测试显示,该电催化剂的OER过电位仅有275 mV且能够在100 mA/cm2的电流密度下稳定维持20 h,兼具优异的电催化活性和稳定性,与20% Pt/C组成的两电极体系在自制膜电极装置中电催化全解水,仅需2.041 V施加电位即可实现100 mA/cm2的电流密度,具有工业应用前景。
  • FIG. 2286.  FIG. 2286.

    FIG. 2286.  FIG. 2286.

    Figure  1  Diagram of the synthesis of Fe-Co3O4/NC electrocatalyst

    Figure  2  XRD patterns of (a) ZIF-67, (c) CoFe precursor, (e) Co3O4, Fe-Co3O4/NC-5, Fe-Co3O4/NC, and Fe-Co3O4/NC-25; TEM images of (b) ZIF-67, (d) CoFe precursor, (f) Fe-Co3O4/NC; HRTEM image of (g) Fe-Co3O4/NC; SAED pattern of (h) Fe-Co3O4/NC; SEM-mapping (i) and corresponding EDS diagram (j) of Fe-Co3O4/NC

    Figure  3  TEM images of (a) Co3O4/NC, (b) Fe-Co3O4/NC-5, (c) Fe-Co3O4/NC and (d) Fe-Co3O4/NC-25

    Figure  4  (a) XPS full spectrum of Fe-Co3O4/NC, XPS fine spectra of (b) Co 2p orbitals of Fe-Co3O4/NC and Co3O4/NC, (c) Fe 2p orbital of Fe-Co3O4/NC, and (d) O 1s orbitals of Fe-Co3O4/NC and Co3O4/NC

    Figure  5  OER performance characterization of samples, (a) LSV curves with iR-compensation, (b) corresponding Tafel curves, (c) Cdl fitting curves, (d) EIS impedance spectrums and insert plot is the equivalent circuit diagram, and (e) V-t stability curve of Fe-Co3O4/NC for electrocatalysis 20 h at a current density of 100 mA/cm2 and insert plot is the TEM image of Fe-Co3O4/NC after stability test

    Figure  6  CV curves of samples in the OER non-Faraday region (1.024−1.124 V vs. RHE)

    Figure  7  (a) HRTEM image of Fe-Co3O4/NC electrocatalyst after the OER stability test, XPS fine spectra of (b) Co 2p orbital; (c) Fe 2p orbital and (d) O 1s orbital of Fe-Co3O4/NC before and after the OER stability test

    Figure  8  LSV curves with iR-compensation of Fe-Co3O4/NC-based samples with (a) various reaction temperatures and (b) various reaction time

    Figure  9  (a) schematic diagram of a self-made electrolytic water membrane electrode device; (b) LSV curves of NF‖NF, 20% Pt/C/NF‖RuO2/NF, 20% Pt/C/NF‖Fe-Co3O4/NC/NF, 20% Pt/C/NF‖Co3O4/NC/NF and (c) comparison bar chart of corresponding cell potential

    Table  1  Performance comparisons of Fe-Co3O4/NC with other reported advanced spinel-based OER electrocatalysts

    ElectrocatalystElectrolyteCurrent /(mA·cm−2)Overpotential /mVReference
    Fe-Co3O4/NC1 mol/L KOH10275this work
    FCO-Vo@NC1 mol/L KOH10318[19]
    Fe-Co3O41 mol/L KOH10280[20]
    VOB-Co3O4/NF1 mol/L KOH50315[21]
    FexCo3−xO41 mol/L KOH10295[22]
    下载: 导出CSV
  • [1] YÜKSEL Y E. Elementary science teacher candidates’ views on hydrogen as future energy carrier[J]. Int J Hydrog Energy,2019,44(20):9817−9822. doi: 10.1016/j.ijhydene.2018.12.009
    [2] LI J, WANG L, HE H, CHEN Y, GAO Z, MA N, WANG B, ZHENG L, LI R, WEI Y, XU J, XU Y, CHENG B, YIN Z, MA D. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction[J]. Nano Res,2022,15(6):4986−4995. doi: 10.1007/s12274-022-4144-6
    [3] HWANG H, KWON T, KIM H Y, PARK J, OH A, KIM B, BAIK H, JOO S H, LEE K. Ni@Ru and NiCo@Ru core-shell hexagonal nanosandwiches with a compositionally tunable core and a regioselectively grown shell[J]. Small,2018,14(3):1702353−1702364. doi: 10.1002/smll.201702353
    [4] PRASANKUMAR T, VIGNESHWARAN J, BAGAVATHI M, JOSE S. Expeditious and eco-friendly synthesis of spinel LiMn2O4 and its potential for fabrication of supercapacitors[J]. J Alloys Compd,2020,834:155060−155068. doi: 10.1016/j.jallcom.2020.155060
    [5] XU Q, JIANG H, ZHANG H, JIANG H, LI C. Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction[J]. Electrochim Acta,2018,259:962−967. doi: 10.1016/j.electacta.2017.11.028
    [6] WU Q, DONG A, YANG C, YE L, ZHAO L, JIANG Q. Metal-organic framework derived Co3O4@Mo-Co3S4-Ni3S2 heterostructure supported on Ni foam for overall water splitting[J]. Chem Eng J,2021,413:127492−127501. doi: 10.1016/j.cej.2020.127492
    [7] ZHANG C, ZHENG F, ZHANG Z, XIANG D, CHENG C, ZHAUNG Z, LI P, LI X, CHEN W. Fabrication of hollow pompon-like Co3O4 nanostructures with rich defects and high-index facet exposure for enhanced oxygen evolution catalysis[J]. J Mater Chem A,2019,7(15):9059−9067. doi: 10.1039/C9TA00330D
    [8] TRAN-PHU T, DAIYAN R, LEVERETT J, FUSCO Z, TADICH A, BERNARDO I DI, KIY A, TRUONG T N, ZHANG Q, CHEN H, KLUTH P, AMAL R, TRICOLI A. Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts[J]. Chem Eng J,2022,429:132180−132192. doi: 10.1016/j.cej.2021.132180
    [9] PENG C, LIU H, CHEN J, ZHANG Y, ZHU L, WU Q, ZOU W, WANG J, FU Z, LU Y. Modulating the potential-determining step in oxygen evolution reaction by regulating the cobalt valence in NiCo2O4 via Ru substitution[J]. Appl Surf Sci,2021,544:148897−148904. doi: 10.1016/j.apsusc.2020.148897
    [10] YAN L, NIU L, SHEN C, ZHANG Z, LIN J, SHEN F, GONG Y, LI C, LIU X, XU S. Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M= Fe, Co and Ni) doping[J]. Electrochim Acta,2019,306:529−540. doi: 10.1016/j.electacta.2019.03.174
    [11] PAN Y, YAN S, LIU Y, TIAN Z, LI D, CHEN Y, GUO L, WANG Y. Significantly enhanced electrochemical performance of 2D Ni-MOF by carbon quantum dot for high-performance supercapacitors[J]. Electrochim Acta,2022,422:140560−140568. doi: 10.1016/j.electacta.2022.140560
    [12] BABAR P, LOKHANDE A, SHIN H H, PAAWAR B, GANG M G, PAWAR S, KIM J H. Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting[J]. Small,2018,14(7):1702568−1702576. doi: 10.1002/smll.201702568
    [13] WANG S, LI Q, CHEN M, PU W, WU Y, YANG M. Electrochemical capacitance performance of Fe-doped Co3O4/graphene nanocomposite: investigation on the effect of iron[J]. Electrochim Acta,2016,215:473−482. doi: 10.1016/j.electacta.2016.08.138
    [14] ZHANG S L, GUAN B Y, LU X F, XI S, DU Y, LOU X W D. Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution[J]. Adv Mater,2020,32(31):e2002235. doi: 10.1002/adma.202002235
    [15] ZHOU Y, LI M, SONG J, LIU Y, ZHANG J, YANG L, ZHANG Z, BO Z, WANG H. High efficiency small molecular acceptors based on novel O-functionalized ladder-type dipyran building block[J]. Nano Energy,2018,45:10−20. doi: 10.1016/j.nanoen.2017.12.030
    [16] QIN J, LIU Z, WU D, YANG J. Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries[J]. Appl Catal B: Environ,2020,278:119300−119310. doi: 10.1016/j.apcatb.2020.119300
    [17] WANG X, ZHOU Y, LUO J, SUN F, ZHANG J. Synthesis of V-doped urchin-like NiCo2O4 with rich oxygen vacancies for electrocatalytic oxygen evolution reactions[J]. Electrochimica Acta,2022,406:139800−139809. doi: 10.1016/j.electacta.2021.139800
    [18] ZHONG F, LI Z, LUO Y, CHEN C, ZHOU C, LIN L, CAI G, AU C, JIANG L. Geometric structure distribution and oxidation state demand of cations in spinel NixFe1-xCo2O4 composite cathodes for solid oxide fuel cells[J]. Chem Eng J,2021,425:131822−131834. doi: 10.1016/j.cej.2021.131822
    [19] MIN K, HWANG M, SHIM S E, LIM D, BAECK S -H. Defect-rich Fe-doped Co3O4 derived from bimetallic-organic framework as an enhanced electrocatalyst for oxygen evolution reaction[J]. Chem Eng J,2021,424:130400−130408. doi: 10.1016/j.cej.2021.130400
    [20] PAN S, MAO X, YU J, HAO L, DU A, LI B. Remarkably improved oxygen evolution reaction activity of cobalt oxides by an Fe ion solution immersion process[J]. Inorg Chem Front,2020,7(18):3327−3339. doi: 10.1039/D0QI00385A
    [21] YUAN H, WANG S, MA Z, KUNDU M, TANG B, LI J, WANG X. Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride[J]. Chem Eng J,2021,404:126474−126487. doi: 10.1016/j.cej.2020.126474
    [22] SHENG Y, BOTERO M L, MANUPUTTY M Y, KRAFT M, XU R. Co3O4 and FexCo3–xO4 nanoparticles/films synthesized in a vapor-fed flame aerosol reactor for oxygen evolution[J]. ACS Appl Energy Mater,2018,1(2):655−665. doi: 10.1021/acsaem.7b00172
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1773
  • HTML全文浏览量:  125
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-09-27
  • 录用日期:  2022-10-09
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回