留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米羟基磷灰石负载镍甲烷干重整催化剂的载体形貌效应

王彦博 贺雷 李文翠

王彦博, 贺雷, 李文翠. 纳米羟基磷灰石负载镍甲烷干重整催化剂的载体形貌效应[J]. 燃料化学学报(中英文), 2023, 51(7): 977-986. doi: 10.1016/S1872-5813(23)60332-9
引用本文: 王彦博, 贺雷, 李文翠. 纳米羟基磷灰石负载镍甲烷干重整催化剂的载体形貌效应[J]. 燃料化学学报(中英文), 2023, 51(7): 977-986. doi: 10.1016/S1872-5813(23)60332-9
WANG Yan-bo, HE Lei, LI Wen-cui. Morphology effect of nano-hydroxyapatite as support for loading Ni in methane dry reforming[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 977-986. doi: 10.1016/S1872-5813(23)60332-9
Citation: WANG Yan-bo, HE Lei, LI Wen-cui. Morphology effect of nano-hydroxyapatite as support for loading Ni in methane dry reforming[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 977-986. doi: 10.1016/S1872-5813(23)60332-9

纳米羟基磷灰石负载镍甲烷干重整催化剂的载体形貌效应

doi: 10.1016/S1872-5813(23)60332-9
详细信息
    通讯作者:

    E-mail: helei@dlut.edu.cn

    wencuili@dlut.edu.cn

  • 中图分类号: O643.3

Morphology effect of nano-hydroxyapatite as support for loading Ni in methane dry reforming

  • 摘要: 本研究通过对羟基磷灰石(HAP)的形貌调控,得到表面Ca、O、P分布不同的纳米棒状、片状和线状的HAP载体,负载1.25%的活性组分镍后,得到Ni/HAP-R、Ni/HAP-S和Ni/HAP-W催化剂进行甲烷干重整性能研究。其中,Ni/HAP-R催化剂表现出最优的活性和抗积炭性能。利用XRD、氮吸附-脱附、FT-IR、XPS及CO2-TPD,对催化剂晶相结构、电子性质及表面酸碱性进行表征,证实棒状HAP具有最高的比表面积,有利于Ni的分散锚定,因此,活性最佳。且棒状HAP表面富Ca–O–P碱性位点,能够有效活化CO2,促进积炭消除。TPSR实验进一步证实Ni/HAP-R催化剂上甲烷的深度裂解生成积炭的过程受到抑制,且在CO2存在时能够迅速转化为CO和H2,因此,具有良好的抗积炭性能。该研究为高稳定负载型催化剂的设计合成提供了新的思路。
  • FIG. 2471.  FIG. 2471.

    FIG. 2471.  FIG. 2471.

    图  1  ((a)、(d)) HAP-R,((b)、(e)) HAP-S,((c)、(f)) HAP-W的SEM照片

    Figure  1  SEM images for ((a), (d)) HAP-R,((b), (e)) HAP-S,((c), (f)) HAP-W

    图  2  三种不同形貌羟基磷灰石的(a) XRD和(b) FT-IR谱图

    Figure  2  (a) XRD patterns and (b) FT-IR spectra for the as-prepared HAP supports

    图  3  (a) Ni/HAP-R,(b) Ni/HAP-S,(c) Ni/HAP-W还原后催化剂的TEM照片,以及(d)对应的XRD谱图

    Figure  3  TEM images for reduced (a) Ni/HAP-R, (b) Ni/HAP-S and (c) Ni/HAP-W catalysts; (d) the corresponding XRD patterns

    图  4  Ni/HAP-R、Ni/HAP-S、Ni/HAP-W还原后催化剂的氮气吸附-脱附曲线以及对应的比表面积和孔容

    Figure  4  Nitrogen sorption isotherms of reduced Ni/HAP-R,Ni/HAP-S,Ni/HAP-W catalysts and the corresponding specific surface area and pore volume

    图  5  (a) HAP-R、HAP-S和HAP-W的CO2-TPD质谱(m/z=44)谱图;(b) Ni/HAP-R、Ni/HAP-S和Ni/HAP-W催化剂的H2-TPR谱图

    Figure  5  (a) Mass spectra (m/z=44) of CO2-TPD for HAP-R, HAP-S and HAP-W; (b) H2-TPR results for Ni/HAP-R, Ni/HAP-S and Ni/HAP-W catalysts

    图  6  Ni/HAP-R、Ni/HAP-S和Ni/HAP-W催化剂的(a) Ni 2p XPS谱图和(b) UV-vis-DRS谱图

    Figure  6  (a) Ni 2p XPS and (b) UV-vis-DRS spectra for Ni/HAP-R, Ni/HAP-S and Ni/HAP-W catalysts

    图  7  Ni/HAP-R、Ni/HAP-S和Ni/HAP-W催化剂在800 ℃甲烷干重整反应中的转化率

    Figure  7  (a) CH4 and (b) CO2 conversion for Ni/HAP-R、Ni/HAP-S and Ni/HAP-W catalysts for MDR reaction

    图  8  反应后Ni/HAP-R、Ni/HAP-S和Ni/HAP-W催化剂的(a)TG曲线和(b)对应的质谱(m/z=44)谱图

    Figure  8  (a) TG curves and (b) corresponding mass spectra (m/z=44) for the spent Ni/HAP-R, Ni/HAP-S and Ni/HAP-W catalysts

    图  9  (a) Ni/HAP-R催化剂的800 ℃稳定性测试, (b) 稳定性测试后的XRD谱图; (c) 稳定性测试后的TG及质谱谱图

    Figure  9  (a) Stability test of Ni/HAP-R catalyst at 800 ℃; (b) XRD pattern for the catalyst after stability test; (c) TG and the corresponding mass spectra (m/z=44)

    图  10  Ni/HAP-R、Ni/HAP-S和Ni/HAP-W催化剂的程序升温反应质谱谱图 ((a)–(c)) CH4-TPSR, ((d)–(f)) CH4/CO2-TPSR

    Figure  10  Mass spectra of ((a)–(c)) CH4-TPSR and ((d)–(f)) CH4/CO2-TPSR for Ni/HAP-R, Ni/HAP-S and Ni/HAP-W catalysts

  • [1] 付彧, 孙予罕. CH4-CO2重整技术的挑战与展望[J]. 中国科学(化学),2020,50(7):816−831.

    FU Yu, SUN Yu-han. CH4-CO2 reforming: challenges and outlook[J]. Sci Sin Chim,2020,50(7):816−831.
    [2] 张涛, 刘志成, 杨为民. 低碳烷烃与二氧化碳催化转化研究进展[J]. 中国科学(化学),2021,51(2):154−164. doi: 10.1360/SSC-2020-0171

    ZHANG Tao, LIU Zhi-cheng, YANG Wei-min. Progress in the catalytic conversion of light alkanes with carbon dioxide[J]. Sci Sin Chim,2021,51(2):154−164. doi: 10.1360/SSC-2020-0171
    [3] 阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展,2018,37(10):3850−3857. doi: 10.16085/j.issn.1000-6613.2017-2241

    RUAN Yong-zhe, LU Yao, WANG Sheng-ping. Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming[J]. Chem Ind Eng Progr,2018,37(10):3850−3857. doi: 10.16085/j.issn.1000-6613.2017-2241
    [4] 张荣俊, 夏国富, 李明丰, 吴玉, 聂红, 李大东. 载体类型对Ni基催化剂甲烷干重整反应性能的影响[J]. 燃料化学学报,2015,43(11):1359−1365. doi: 10.3969/j.issn.0253-2409.2015.11.011

    ZHANG Rong-jun, XIA Guo-fu, LI Ming-feng, WU Yu, NIE Hong, LI Da-dong. Effect of support on catalytic performance of Ni-based catalyst in methane dry reforming[J]. J Fuel Chem Technol,2015,43(11):1359−1365. doi: 10.3969/j.issn.0253-2409.2015.11.011
    [5] WANG Y-B, HE L, ZHOU B-C, SHENG J, FAN J, LI W-C. Anti-coking NiCe /HAP catalyst with well-balanced carbon formation and gasification in methane dry reforming[J]. Fuel,2022,329:125477. doi: 10.1016/j.fuel.2022.125477
    [6] YANG B, DENG J, LI H, YAN T, ZHANG J, ZHANG D. Coking-resistant dry reforming of methane over Ni/γ-Al2O3 catalysts by rationally steering metal-support interaction[J]. Science,2021,24:102747. doi: 10.1016/j.isci.2021.102747
    [7] BIAN Z, ZHONG W, YU Y, WANG Z, JIANG B, KAWI S. Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: effect of calcination temperature[J]. Int J Hydrogen Energy,2021,46:31041−31053. doi: 10.1016/j.ijhydene.2020.12.064
    [8] JOO S, SEONG A, KWON O, KIM K, LEE J H, GORTE R J, VOHS J M, HAN J W, KIM G. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition[J]. Sci Adv,2020,6:eabb1573. doi: 10.1126/sciadv.abb1573
    [9] HE L, LI M, LI W-C, XU W, WANG Y, WANG Y-B, SHEN W, LU A-H. Robust and coke-free Ni catalyst stabilized by 1–2 nm–thick multielement oxide for methane dry reforming[J]. ACS Catal,2021,11:12409−12416.
    [10] ALIPOUR Z, REZAEI M, MESHKANI F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane[J]. J Ind Eng Chem,2014,20(5):2858−2863. doi: 10.1016/j.jiec.2013.11.018
    [11] HU Y H. Solid-solution catalysts for CO2 reforming of methane[J]. Catal Today,2009,148(3/4):206−211.
    [12] SONG Y, OZDEMIR E, RAMESH S, ADISHEV A, SUBRAMANIAN S, HARALE A, ALBUALI M, FADHEL B A, JAMAL A, MOON D, CHOI S H, YAVUZ C T. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science,2020,367:777−781. doi: 10.1126/science.aav2412
    [13] AKRI M, ZHAO S, LI X, ZANG K, LEE A F, ISAACS M A, XI W, GANGARAJULA Y, LUO J, REN Y, CUI Y-T, LI L, SU Y, PAN X, WEN W, PAN Y, WILSON K, LI L, QIAO B, ISHII H, LIAO Y-F, WANG A, WANG X, ZHANG T. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nat Commun,2019,10(1):5181. doi: 10.1038/s41467-019-12843-w
    [14] 张三兵, 李作鹏, 鲁润华, 王晓来. 羟基磷灰石负载Ni催化剂中Ni含量对催化甲烷二氧化碳重整制合成气性能的影响[J]. 燃料化学学报,2014,42(4):461−466.

    ZHANG San-bing, LI Zuo-peng, LU Run-hua, WANG Xiao-lai. Effects of Ni content of Ni/hydroxyapatite catalysts on catalytic properties for carbon dioxide reforming of methane[J]. J Fuel Chem Technol,2014,42(4):461−466.
    [15] 王庆楠. 乙醇催化转化制高值含氧化学品[D]. 辽宁: 大连理工大学, 2019.

    WANG Qing-nan. Upgrading of ethanol to value-added oxygen-containing chemicals[D]. Liaoning: Dalian University of Technology, 2019.
    [16] TSUCHIDA T, KUBO J, YOSHIOKA T, SAKUMA S, TAKEGUCHI T, UEDA W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. J Catal,2008,259(2):183−189. doi: 10.1016/j.jcat.2008.08.005
    [17] LIN K, CHANG J, ZHU Y, WU W, CHENG G, ZENG Y, RUAN M A. facile one-step surfactant-free and low-temperature hydrothermal method to prepare uniform 3D structured carbonated apatite flowers[J]. Cryst Growth Des,2009,9(1):177−181. doi: 10.1021/cg800129u
    [18] WANG X, ZHUANG J, PENG Q, LI Y D. Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods[J]. Adv Mater,2006,18(15):2031−2034. doi: 10.1002/adma.200600033
    [19] MOBASHERPOUR I, HESHAJIN M S, KAZEMZADEH A, ZAKERI M. Synthesis of nanocrystalline hydroxyapatite by using precipitation method[J]. J Alloys Compd,2007,430:330−333. doi: 10.1016/j.jallcom.2006.05.018
    [20] WANG Q-N, ZHOU B-C, WENG X-F, LV S-P, SCHÜTH F, LU A-H. Hydroxyapatite nanowires rich in [Ca–O–P] sites for ethanol direct coupling showing high C6–12 alcohol yield[J]. Chem Commun,2019,55(70):10420−10423. doi: 10.1039/C9CC05454E
    [21] LONDOñO-RESTREPO S M, ZUBIETA-OTERO L F, JERONIMO-CRUZ R, MONDRAGON M A, RODRIGUEZ-GARCÍA M E. Effect of the crystal size on the infrared and Raman spectra of bio hydroxyapatite of human, bovine, and porcine bones[J]. J Raman Spectrosc,2019,50:1120−1129. doi: 10.1002/jrs.5614
    [22] WANG Q-N, WENG X-F, ZHOU B-C, LV S-P, MIAO S, ZHANG D, HAN Y, SCOTT S L, SCHÜTH F, LU A-H. Direct, selective production of aromatic alcohols from ethanol using a tailored bifunctional cobalt-hydroxyapatite catalyst[J]. ACS Catal,2019,9(8):7204−7216. doi: 10.1021/acscatal.9b02566
    [23] JUN J H, LEE T-J, LIM T H, NAM S-W, HONG S-A, YOON K J. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: characterization and activation[J]. J Catal,2004,221(1):178−190. doi: 10.1016/j.jcat.2003.07.004
    [24] MENG J, PAN W, GU T, BU C, ZHANG J, WANG X, LIU C, XIE H, PIAO G. One-pot synthesis of a highly active and stable Ni-embedded hydroxyapatite catalyst for syngas production via dry reforming of methane[J]. Energy Fuels,2021,35:19568−19580. doi: 10.1021/acs.energyfuels.1c02851
    [25] MENG J, GU T, PAN W, BU C, ZHANG J, WANG X, LIU C, XIE H, PIAO G. Promotional effects of defects on Ni/HAP catalyst for carbon resistance and durability during dry reforming of methane[J], Fuel, 2022, 310: 122363.
    [26] WANG Y-B, HE L, ZHOU B-C, TANG F, FAN J, WANG D-Q, LU A-H, LI W-C. Hydroxyapatite nanorods rich in [Ca–O–P] sites stabilized Ni species for methane dry reforming[J]. Ind Eng Chem Res,2021,60:15064−15073.
    [27] DAMYANOVA S, PAWELEC B, PALCHEVA R, KARAKIROVA Y, SANCHEZ M C C, TYULIEV G, GAIGNEAUX E, FIERRO J L G. Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production[J]. Appl Catal B: Environ,2018,225:340−353. doi: 10.1016/j.apcatb.2017.12.002
    [28] ZHU Y, ZHANG S, CHEN B, ZHANG Z, SHI C. Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane[J]. Catal Today,2016,264:163−170. doi: 10.1016/j.cattod.2015.07.037
    [29] 李睿杰, 章菊萍, 史健, 李孔斋, 刘慧利, 祝星. Ni/CeO2催化剂的金属-载体界面调控及其低温化学链甲烷干重整性能研究[J]. 燃料化学学报,2022,50(11):1458−1470. doi: 10.1016/S1872-5813(22)60032-X

    LI Rui-jie, ZHANG Ju-ping, SHI Jian, LI Kong-zhai, LIU Hui-li, ZHU Xing. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. J Fuel Chem Technol,2022,50(11):1458−1470. doi: 10.1016/S1872-5813(22)60032-X
    [30] BHATTAR S, KRISHNAKUMAR A, KANITKAR S, ABEDIN A, SHEKHAWAT D, HAYNES D J, SPIVEY J J. 110th anniversary: Dry reforming of methane over Ni- and Sr-substituted lanthanum zirconate pyrochlore catalysts: Effect of Ni loading[J]. Ind Eng Chem Res,2019,58(42):19386−19396.
  • 加载中
图(11)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  43
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-24
  • 录用日期:  2022-12-25
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回