留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions

SUN Huai-lu LI Kai-xin YU Wen-long DING Jun-wei SHAN Yu-ling

孙怀禄, 李开欣, 于文龙, 丁军委, 单玉领. Pt基催化剂在富丙烯气氛中选择性氢气氧化性能和结构演变规律[J]. 燃料化学学报(中英文), 2023, 51(5): 616-624. doi: 10.1016/S1872-5813(23)60336-6
引用本文: 孙怀禄, 李开欣, 于文龙, 丁军委, 单玉领. Pt基催化剂在富丙烯气氛中选择性氢气氧化性能和结构演变规律[J]. 燃料化学学报(中英文), 2023, 51(5): 616-624. doi: 10.1016/S1872-5813(23)60336-6
SUN Huai-lu, LI Kai-xin, YU Wen-long, DING Jun-wei, SHAN Yu-ling. The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 616-624. doi: 10.1016/S1872-5813(23)60336-6
Citation: SUN Huai-lu, LI Kai-xin, YU Wen-long, DING Jun-wei, SHAN Yu-ling. The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 616-624. doi: 10.1016/S1872-5813(23)60336-6

Pt基催化剂在富丙烯气氛中选择性氢气氧化性能和结构演变规律

doi: 10.1016/S1872-5813(23)60336-6
详细信息
  • 中图分类号: TQ031.4

The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions

Funds: The project was supported by the National Natural Science Foundation of China (22108144) and Natural Science Foundation of Shandong Province (ZR2021MB014)
More Information
  • 摘要: 本工作研究了富丙烯气氛中Pt基催化剂的SHC性能和长期使用过程中活性相的演变规律。结果发现,Sn修饰的Pt/SiO2催化剂在丙烷和丙烯同时存在的条件下具有高的氢气氧化选择性(大于98%)。通过动力学研究,稳定性测试和结构表征发现,氧气的引入能够显著提高催化剂的结焦速率,形成的高度石墨化的焦炭,Pt的烧结,PtSn合金中Sn的氧化和偏析是导致长期稳定性测试中选择性下降的主要因素。
  • FIG. 2291.  FIG. 2291.

    FIG. 2291.  FIG. 2291.

    Figure  1  HRTEM images and Pt size distributions of fresh Pt/SiO2 (a), PtSn/SiO2 (b) and spent Pt/SiO2 (c) and PtSn/SiO2 (d) after 25 h on stream Surface-weighted metal cluster diameters were calculated from dTEM = $\displaystyle \sum {n}_{{i}} {d}_{{i}}^3 \Bigg/ \sum {n}_{{i}} {d}_{{i}}^2$

    Figure  2  (a) H2-TPR spectra of catalysts; (b) XPS spectra of Sn 3d5/2 of freshly reduced and spent (pH2=12 kPa, pO2=3 kPa, 550 °C, 12 h) Pt-Sn/SiO2 catalyst

    Figure  3  Activities and selectivites of Pt/SiO2, PtSn/SiO2 and Sn/SiO2 catalysts

    SHC under condition: ((a), (b)) pC3H8 =12 kPa, pH2 = 6 kPa, total flow = 100 mL/min; ((c), (d)) pC3H8 =12 kPa, pC3H6 = 6 kPa, pH2 = 6 kPa, pO2 = 1.5 kPa, total flow =50 mL/min O2 in shown in the picture, balance is nitrogen, 550 °C

    Figure  4  Activities and selectivites of Pt/SiO2 and PtSn/SiO2 catalysts (a): conversion of oxygen; (b): oxygen selectivity to water

    Pt/SiO2_H denotes reacting in high C3H6 condition: pC3H8 =18 kPa, pC3H6 = 30 kPa, pH2 = 6 kPa, pO2 = 1.5 kPa; Pt/SiO2_L denotes reacting in low C3H6 condition: pC3H8 =18 kPa, pC3H6 = 6 kPa, pH2 = 6 kPa, pO2 = 1.5 kPa, total flow is 50 mL/min, balance is nitrogen, 550 °C

    Figure  5  (a) Coke content of spent Pt/SiO2 catalyst at three reaction conditions after 10 h on stream at different conditions; ((b), (c)) TPO and Raman spectra of spent Pt/SiO2 catalyst; (d) relationship between propene partial pressure and coking rates in presence (this work) and absent of oxygen (data from ref. [24]); ((e), (f)) HRTEM images of spent Pt/SiO2 catalyst Condition A: pC3H8=18 kPa, pC3H6=30 kPa, pH2 = 6 kPa; Condition B: pC3H8 = 18 kPa, pC3H6 = 30 kPa, pH2 = 3 kPa ; Condition C: pC3H8 = 18 kPa, pC3H6 = 30 kPa, pH2 = 6 kPa, pO2=1.5 kPa. Balance is N2, total flow is 50 mL/min, 550 °C

    Figure  6  Schematic illustration the SHC performances and evolution processes of active sites of Pt-based catalysts under propene-rich condition

    Table  1  Physicochemical properties of Pt/SiO2, PtSn/SiO2 and SnO2/SiO2 catalysts

    SampleMetal loading w/%Surface area/(m2·g−1)Pt dispersion/%$D_{\rm{chem}}^{\rm{a}} $/nm$d_{\rm{TEM}}^{\rm{b}} $/nm
    Pt/SiO20.3523259.51.92.3
    PtSn/SiO2(0.35) Pt-(0.22) Sn22143.42.62.8
    SnO2/SiO20.35235
    Note: a: determined by H2 chemisorption; b: determined by TEM analysis
    下载: 导出CSV

    Table  2  Selective hydrogen combustion over Pt nanoparticles loaded on different supports

    SampleO2 conversion/%O2 selectivity to H2O/%Coke contentc w/%
    initialafinalbinitialafinalb
    PtK/SiO298.398.5 96.387.910.5
    Pt/MgO98.694.495.366.418.6
    Pt/SiO295.196.694.583.639.1
    Pt/ γ-Al2O398.694.885.887.643.8
    Notes: a: recorded at 5 min; b: recorded at 25 h; c: detected by TGA
    下载: 导出CSV
  • [1] SATTLER J J, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, WECKHUYSEN B M. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chem Rev,2014,114:10613−10653. doi: 10.1021/cr5002436
    [2] OTROSHCHENKO T, JIANG G, KONDRATENKO V A, RODEMERCK U, KONDRATENKO E V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts[J]. Chem Soc Rev,2021,50:473−527. doi: 10.1039/D0CS01140A
    [3] SUN P, SIDDIQI G, VINING W C, CHI M, BELL A T. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation[J]. J Catal,2011,282:165−174. doi: 10.1016/j.jcat.2011.06.008
    [4] TSIKOYIANNIS J G, STERN D L, GRASSELLI R K. Metal oxides as selective hydrogen combustion (SHC) catalysts and their potential in light paraffin dehydrogenation[J]. J Catal,1999,184:77−86. doi: 10.1006/jcat.1998.2363
    [5] GRASSELLI R K, STERN D L, TSIKOYIANNIS J G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): II. DH + SHC catalysts physically mixed (redox process mode)[J]. Appl Catal A: Gen,1999,189:9−14. doi: 10.1016/S0926-860X(99)00195-7
    [6] GRANT J T, CARRERO C A, GOELTL F, VENEGAS J, MUELLER P, BURT S P, SPECHT S E, MCDERMOTT W P, CHIEREGATO A, HERMANS I. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science,2016,354:1570−1573. doi: 10.1126/science.aaf7885
    [7] KANEKO S, ARAKAWA T, OHSHIMA M A, KUROKAWA H, MIURA H. Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts[J]. Appl Catal A: Gen,2009,356:80−87. doi: 10.1016/j.apcata.2008.12.022
    [8] NAWAZ Z. Light alkane dehydrogenation to light olefin technologies: A comprehensive review[J]. Rev Chem Eng,2015,31:413−436.
    [9] LÅTE L, THELIN W, BLEKKAN E A. Selective combustion of hydrogen in the presence of hydrocarbons: Part 2. Metal oxide based catalysts[J]. Appl Catal A: Gen,2002,262:63−68.
    [10] BECKERS J, CLERC F, BLANK J H, ROTHENBERG G. Selective hydrogen oxidation catalysts via genetic algorithms[J]. Adv Synth Catal,2010,40:2237−2249.
    [11] DUDEK R B, YUNFEI G, JUNSHE Z, FANXING L. Manganese-containing redox catalysts for selective hydrogen combustion under a cyclic redox scheme[J]. AIChE J,2018,64(8):3141−3150. doi: 10.1002/aic.16173
    [12] WAKU T, BISCARDI J A, IGLESIA E. Catalytic dehydrogenation of alkanes on Pt/Na-[Fe]ZSM-5 and staged O2 introduction for selective H2 removal[J]. J Catal,2004,222:481−492. doi: 10.1016/j.jcat.2003.12.011
    [13] YU C, GE Q, XU H, LI W. Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene[J]. Appl Catal A: Gen,2006,315:58−67. doi: 10.1016/j.apcata.2006.08.038
    [14] RODRÍGUEZ D, SÁNCHEZ J, ARTEAGA G. Effect of tin and potassium addition on the nature of platinum supported on silica[J]. J Mol Catal A: Chem,2005,228:309−317. doi: 10.1016/j.molcata.2004.09.067
    [15] SEXTON B A, HUGHES A E, FOGER K. An X-ray photoelectron spectroscopy and reaction study of Pt-Sn catalysts[J]. J Catal,1984,88:466−477. doi: 10.1016/0021-9517(84)90024-1
    [16] GARDNER S D, HOFLUND G B, DAVIDSON M R, SCHRYER D R. Evidence of alloy formation during reduction of platinized tin oxide surfaces[J]. J Catal,1989,115:132−137. doi: 10.1016/0021-9517(89)90013-4
    [17] ARANA J, RAMIREZ DE LA PISCINA P, LLORCA J, SALES J, HOMS N, FIERRO J. Bimetallic silica-supported catalysts based on Ni-Sn, Pd-Sn, and Pt-Sn as materials in the CO oxidation reaction[J]. Chem Mater,1998,10:1333−1342. doi: 10.1021/cm970728n
    [18] NYKÄNEN L, HONKALA K. Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles[J]. ACS Catal,2013,3:3026−3030. doi: 10.1021/cs400566y
    [19] FU H, LIU Z P, LI Z H, WANG W N, FAN K N. Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface[J]. J Am Chem Soc,2006,128:11114−11123. doi: 10.1021/ja0611745
    [20] XIAO L, SHAN Y L, SUI Z J, CHEN D, ZHOU X G, YUAN W K, ZHU Y A. Beyond the reverse horiuti-polanyi mechanism in propane dehydrogenation over Pt catalysts[J]. ACS Catal,2020,10:14887−14902. doi: 10.1021/acscatal.0c03381
    [21] SHAN Y L, SUN H L, ZHAO S L, TANG P L, ZHAO W T, DING J W, YU W L, LI L N, FENG X, CHEN D. Effects of support and CO2 on the performances of vanadium oxide-based catalysts in propane dehydrogenation[J].ACS Catal, 2022, 12: 5736−5749.
    [22] VAN S A M, KUIPERS J A M, VAN SWAAIJ W P M. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst[J]. Catal Today,2001,66:427−436. doi: 10.1016/S0920-5861(00)00640-4
    [23] GUICHARD B, ROY-AUBERGER M, DEVERS E, REBOURS B, QUOINEAUD A, DIGNE M. Characterization of aged hydrotreating catalysts. Part I: Coke depositions, study on the chemical nature and environment[J]. Appl Catal A: Gen,2009,367:1−8. doi: 10.1016/j.apcata.2009.07.024
    [24] LI Q, SUI Z, ZHOU X, ZHU Y, ZHOU J, CHEN D. Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study[J]. Top Catal,2011,54:888−896. doi: 10.1007/s11244-011-9708-8
    [25] LARSSON M, HULTÉN M, BLEKKAN E A, ANDERSSON B. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation[J]. J Catal,1996,164:44−53. doi: 10.1006/jcat.1996.0361
    [26] MALDONADO-HÓDAR F J, MADEIRA L M P, PORTELA M F. The effects of coke deposition on NiMoO4 used in the oxidative dehydrogenation of butane[J]. J Catal,1996,164:399−410. doi: 10.1006/jcat.1996.0396
    [27] BARBIER JR J, DUPREZ D. Steam effects in three-way catalysis[J]. Appl Catal B: Environ,1994,4:105−140. doi: 10.1016/0926-3373(94)80046-4
    [28] SHAN Y, SUI Z, ZHU Y, CHEN D, ZHOU X. Effect of steam addition on the structure and activity of Pt-Sn catalysts in propane dehydrogenation[J]. Chem Eng J,2015,278:240−248. doi: 10.1016/j.cej.2014.09.107
    [29] YU C, GE Q, XU H, LI W. Influence of oxygen addition on the reaction of propane catalytic dehydrogenation to propylene over modified Pt-based catalysts[J]. Ind Eng Chem Res,2007,46:8722−8728.
    [30] PRZYSTAJKO W, FIEDOROW R, DALLA LANA I G. Ammoxidation of toluene on coke-covered alumina[J]. Appl Catal,1990,59:129−140. doi: 10.1016/S0166-9834(00)82192-2
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2307
  • HTML全文浏览量:  60
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 修回日期:  2022-11-15
  • 录用日期:  2022-11-25
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回