留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁酸钙与生物质焦的化学链气化反应动力学研究

高攀 黄星琪 刘禹彤 艾科热木·阿卜来提 杨少霞

高攀, 黄星琪, 刘禹彤, 艾科热木·阿卜来提, 杨少霞. 铁酸钙与生物质焦的化学链气化反应动力学研究[J]. 燃料化学学报(中英文), 2023, 51(9): 1259-1272. doi: 10.1016/S1872-5813(23)60356-1
引用本文: 高攀, 黄星琪, 刘禹彤, 艾科热木·阿卜来提, 杨少霞. 铁酸钙与生物质焦的化学链气化反应动力学研究[J]. 燃料化学学报(中英文), 2023, 51(9): 1259-1272. doi: 10.1016/S1872-5813(23)60356-1
GAO Pan, HUANG Xing-qi, LIU Yu-tong, ABULAITI Aikeremu, YANG Shao-xia. Kinetic analysis of biochar chemical looping gasification with calcium ferrite as oxygen carriers[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1259-1272. doi: 10.1016/S1872-5813(23)60356-1
Citation: GAO Pan, HUANG Xing-qi, LIU Yu-tong, ABULAITI Aikeremu, YANG Shao-xia. Kinetic analysis of biochar chemical looping gasification with calcium ferrite as oxygen carriers[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1259-1272. doi: 10.1016/S1872-5813(23)60356-1

铁酸钙与生物质焦的化学链气化反应动力学研究

doi: 10.1016/S1872-5813(23)60356-1
基金项目: 国家自然科学基金(51206045)和中央高校基金(2018MS033)资助
详细信息
    通讯作者:

    E-mail: gaopan@ncepu.edu.cn

  • 中图分类号: TK6

Kinetic analysis of biochar chemical looping gasification with calcium ferrite as oxygen carriers

Funds: The project was supported by the National Natural Science Foundation of China (51206045) and the Fundamental Research Funds for Central Universities (2018MS033)
  • 摘要: 为探究铁酸钙载氧体与生物质焦的化学链气化反应动力学,基于热重实验研究了载氧体和生物质焦种类对反应性的影响,结合XRD、SEM、BET等表征手段对实验现象进行分析,并采用 Škvára-Šesták 方法确定了动力学机制函数。结果表明,载氧体反应速率Ca2Fe2O5>CaFe2O4>Fe2O3,载氧量CaFe2O4>Ca2Fe2O5>Fe2O3,生物质焦能够将载氧体完全还原为Fe和CaO;CaFe2O4与生物质焦反应的活化能为167.44–600.83 kJ/mol,Ca2Fe2O5与生物质焦反应的活化能为413.62–583.51 kJ/mol; 其中,CaFe2O4在还原的过程中生成了中间体CaFe3O5,对晶格氧的扩散有一定的影响;CaFe2O4的还原可分为两阶段,当转化率α小于0.15时,CaFe2O4还原为Ca2Fe2O5,还原过程遵循随机成核和核生长模型,当α大于0.15时,进一步还原为CaO和Fe,还原过程遵循三维扩散机制;Ca2Fe2O5的还原机制与CaFe2O4还原的第二阶段相同。
  • FIG. 2669.  FIG. 2669.

    FIG. 2669.  FIG. 2669.

    图  1  载氧体的XRD谱图

    Figure  1  XRD patterns of oxygen carriers: (a) CaFe2O4, (b) Ca2Fe2O5, (c) CaFe2O4 at α= 0.15

    图  2  新鲜载氧体的SEM和EDS照片

    Figure  2  SEM images and EDS spectra of fresh oxygen carriers: (a) CaFe2O4, (b) Ca2Fe2O5

    图  3  生物质焦的孔体积和比表面积

    Figure  3  Pore volume and surface area for the biochars: (a) BJH pore volume distribution, (b) BJH surface area, (c) DFT pore volume distribution, (d) DFT surface area

    图  4  生物质焦的SEM照片

    Figure  4  SEM images of biochars(a): PSc; (b): CSc

    图  5  样品的拉曼光谱谱图

    Figure  5  Raman spectrum fitting curves (a) PSc, (b) CSc, (c) comparison between G-band and other sub-bands

    图  6  不同载氧体非等温气化PSc的 TG 和 DTG 曲线

    Figure  6  TG and DTG curves of non-isothermal gasification of PSc with oxygen carriers

    图  7  CaFe2O4非等温气化PSc和CSc的 TG 和 DTG 曲线

    Figure  7  TG and DTG curves of non-isothermal gasification of PSc and CSc with CaFe2O4

    图  8  不同升温速率下CaFe2O4非等温气化PSc实验 TG 和 DTG 曲线

    Figure  8  TG and DTG curves of non-isothermal gasification of PSc with CaFe2O4 at different heating rates

    图  9  铁酸钙气化生物质焦动力学分析拟合

    Figure  9  Kinetic analysis of non-isothermal gasification of biochar with calcium ferrate (a), (b): CaFe2O4-PSc; (c), (d): Ca2Fe2O5-PSc; (e), (f): CaFe2O4-CSc; (g), (h): Ca2Fe2O5-CSc

    图  10  CaFe2O4还原为CaFe2O5动力学分析拟合

    Figure  10  Kinetic fitting results of the reduction of CaFe2O4 to CaFe2O5 by biochar(a), (b): reduced by PSc, (c), (d): reduced by CSc

    图  11  PSc与Ca2Fe2O5的非等温气化

    Figure  11  Non-isothermal gasification of PSc with Ca2Fe2O5 (a): fitting curves, (b): correlation coefficient and activation energy

    图  12  CaFe2O4非等温气化PSc相关动力学分析拟合

    Figure  12  Modelling conversion curves of non-isothermal gasification of PSc with CaFe2O4 (a) single model of the whole fitting, (b) two model of the piecewise fitting

    图  13  不同样品的实验结果和模型拟合比较

    Figure  13  Comparison of model fitting and experimental results for various samples(a): CaFe2O4-PSc; (b): Ca2Fe2O5-PSc; (c): CaFe2O4-CSc; (d): Ca2Fe2O5-CSc

    表  1  样品的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of samples of biomass and biochar

    SampleProximate analysis wdry/%Ultimate analysis wdry/%QHHV/(MJ·kg−1)
    AFCVCHNO*
    PS1.0013.4485.5647.496.030.2545.2318.83
    CS8.8920.2670.8537.325.152.2446.4015.54
    PSc3.5088.887.6283.931.230.3411.0028.72
    CSc27.0963.619.3057.550.961.5912.8119.90
    *: calculated by difference
    下载: 导出CSV

    表  2  机制函数的微分和积分表达式

    Table  2  Differential and integral expressions of reaction mechanism functions

    ModelSymbolMechanismG(α)f(α)
    1D11-D diffusionα21/2α−1
    2D22-D diffusionα + (1−α)ln(1−α)[−ln(1−α)]−1
    32-D diffusion(Jander)(n = 1/2)[1−(1−α)1/2]1/24(1−α)1/2[1−(1−α)1/2]1/2
    42-D diffusion(Jander)(n = 2)[1−(1−α)1/2]2(1−α)1/2[1−(1−α)1/2]−1
    53-D diffusion(Jander)(n = 1/2)[1−(1−α)1/3]1/26(1−α)2/3[1−(1−α)1/3]1/2
    6D33-D diffusion(Jander)(n = 2)[1−(1−α)1/3]23/2(1−α)2/3[1−(1−α)1/3]−1
    7D43-D diffusion(G-B)1–2/3α-(1−α)2/33/2[(1−α)−1/3−1]−1
    83-D diffusion(anti-Jander)[(1 + α)1/3−1]23/2(1 + α)2/3[(1 + α)1/3−1]−1
    9D53-D diffusion(Z-L-T)[(1−α)−1/3−1]23/2(1−α)4/3[(1−α)−1/3−1]−1
    10A4Random nucleation and nuclei growth(n = 1/4)[−ln(1−α)]1/44(1−α) [−ln(1−α)]3/4
    11A3Random nucleation and nuclei growth(n = 1/3)[−ln(1−α)]1/33(1−α) [−ln(1−α)]2/3
    12A2Random nucleation and nuclei growth(n = 1/2)[−ln(1−α)]1/22(1−α) [−ln(1−α)]1/2
    13A1.5Random nucleation and nuclei growth(n = 2/3)[−ln(1−α)]2/33/2(1−α)[−ln(1−α)]1/3
    14Random nucleation and nuclei growth(Mample)−ln(1−α)1−α
    15Random nucleation and nuclei growth(n = 2)[−ln(1−α)]2−1/2(1−α)[−ln(1−α)]−1
    16Random nucleation and nuclei growth(n = 3)[−ln(1−α)]3−1/3(1−α)[−ln(1−α)]−2
    17Random nucleation and nuclei growth(n = 4)[−ln(1−α)]4−1/4(1−α)[−ln(1−α)]−3
    18Mampel Power(n = 1/4)α1/44α3/4
    19Mampel Power(n = 1/2)α1/22α1/2
    20Mampel Power(n = 1/3)α1/33α2/3
    21R11-D phase boundary reaction(n = 1)α1
    22Mampel Power(n = 3/2)α3/22/3α−1/2
    23(n = 1/4)1−(1−α)1/44(1−α)3/4
    24R33-D phase boundary reaction(n = 1/3)1−(1−α)1/33(1−α)2/3
    25R22-D phase boundary reaction(n = 1/2)1−(1−α)1/22(1−α)1/2
    26(n = 2)1−(1−α)21/2(1−α)−1
    27(n = 3)1−(1−α)31/3(1−α)−2
    28(n = 4)1−(1−α)41/4(1−α)−4
    29Reaction order(n = 2)(1−α)−1(1−α)2
    30C1Reaction order(1−α)−1-1(1−α)2
    31C2Reaction order(n = 3/2)(1−α)−1/22(1−α)3/2
    32C3Reaction order(n = 3)(1−α)−21/2(1−α)3
    下载: 导出CSV

    表  3  采用等转化率法计算载氧体还原的活化能和指前因子

    Table  3  Average fitting parameters, activation energies and pre-exponential factors of oxygen carrier reductions by the equal conversion method

    MethodCaFe2O4-PScCa2Fe2O5-PScCaFe2O4-CScCa2Fe2O5-CSc
    α range0.06−0.150.2−0.90.2−0.90.07−0.150.2−0.90.15−0.8
    FWOE0/(kJ·mol−1)346.74591.17574.83175.64496.04413.62
    R20.95050.96930.98550.97290.98720.9855
    KASE0/(kJ·mol−1)346.52600.83583.51167.44501.75414.95
    R20.94610.96720.99660.96720.98610.9841
    lgA/(min−1)16.07124.67723.7287.59621.46817.507
    下载: 导出CSV

    表  4  采用Škvára-Šesták方法计算载氧体还原活化能和指前因子

    Table  4  Average activation energy and pre-exponential factor of oxygen carrier reductions calculated by the Škvára-Šesták method

    FactorCaFe2O4-PScCa2Fe2O5-PScCaFe2O4-CScCa2Fe2O5-CSc
    α range0.06−0.120.16−0.960.2−0.90.07−0.120.16-0.960.15−0.8
    E /(kJ·mol−1)333.37564.44582.68178.66472.25453.41
    R20.94390.98670.98660.95440.99590.9940
    Model167(D4)7(D4)1588
    |(E0E)/E0|0.03850.04520.01360.01720.04790.0962
    lgA(min−1)15.08921.61822.4168.17118.39917.883
    下载: 导出CSV
  • [1] SUN Z, LIU H P, BAI H C, YU S F, RUSSELL C K, ZENG L, SUN Z Q. The crucial role of deoxygenation in syngas refinement and carbon dioxide utilization during chemical looping-based biomass gasification[J]. Chem Eng J,2022,428:132068. doi: 10.1016/j.cej.2021.132068
    [2] HUANG Z, HE F, FENG Y P, ZHAO K, ZHENG A Q, CHANG S, LI H B. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier[J]. Bioresour Technol,2013,140:138−145. doi: 10.1016/j.biortech.2013.04.055
    [3] GUO Q, CHENG Y, LIU Y Z, JIA W H, RYU H J. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res,2014,53(1):78−86. doi: 10.1021/ie401568x
    [4] KELLER M, FUNG J, LEION H, MATTISSON T. Cu-impregnated alumina/silica bed materials for chemical looping reforming of biomass gasification gas[J]. Fuel,2016,180:448−456. doi: 10.1016/j.fuel.2016.04.024
    [5] 戴金鑫, 刘晶, 刘丰. 化学链燃烧中H2S对NiFe2O4氧载体活性的影响机理[J]. 化工学报,2017,68(3):1163−1169.

    DAI Jin-xin, LIU Jing, LIU Feng. Influence mechanism of H2S on reactivity of NiFe2O4 oxygen carriers for chemical looping combustion[J]. CIESC J,2017,68(3):1163−1169.
    [6] WANG B W, LI J, DING N, MEI D F, ZHAO H B, ZHENG C G. Chemical looping combustion of a typical lignite with a CaSO4-CuO mixed oxygen carrier[J]. Energy Fuels,2017,31(12):13942−13954. doi: 10.1021/acs.energyfuels.7b02584
    [7] LI Y, LI Z S, LIU L, CAI N S. Measuring the fast oxidation kinetics of a manganese oxygen carrier using microfluidized bed thermogravimetric analysis[J]. Chem Eng J,2020,385:123970. doi: 10.1016/j.cej.2019.123970
    [8] LI F, KIM H R, SRIDHAR D, WANG F, ZENG L, CHEN J, FAN L S. Syngas chemical looping gasification process: Oxygen carrier particle selection and performance[J]. Energy Fuels,2009,23(8):4182−4189. doi: 10.1021/ef900236x
    [9] LUO M, YI Y, WANG S, WANG Z L, DU M, PAN J F, WANG Q. Review of hydrogen production using chemical-looping technology[J]. Renewable Sustainable Energy Rev,2018,81:3186−3214. doi: 10.1016/j.rser.2017.07.007
    [10] DHARANIPRAGADA N, BUELENS L C, POELMAN H, GRAVEB E D, GALVITAA V V, MARIN G B. Mg-Fe-Al-O for advanced CO2 to CO conversion: Carbon monoxide yield vs. oxygen storage capacity[J]. J Mater Chem A,2015,3:16251−16262. doi: 10.1039/C5TA02289D
    [11] WANG B W, YAN R, ZHAO H B, ZHENG Y, LIU Z H, ZHENG C G. Investigation of chemical looping combustion of coal with CuFe2O4 oxygen carrier[J]. Energy Fuels,2011,25(7):3344−3354. doi: 10.1021/ef2004078
    [12] EVDOU A, ZASPALIS V, NALBANDIAN L. Ferrites as redox catalysts for chemical looping processes[J]. Fuel,2016,165:367−378. doi: 10.1016/j.fuel.2015.10.049
    [13] HIRABAYASHI D, SAKAI Y, YOSHIKAWA T, MOCHIZUKI K, KOJIMA Y, SUZUKI K, OHSHITA K, WATANABE Y. Mössbauer characterization of calcium-ferrite oxides prepared by calcining Fe2O3 and CaO[J]. Hyperfine Interact,2006,167:809−813. doi: 10.1007/s10751-006-9362-x
    [14] ISMAIL M, LIU W, SCOTT S A. The performance of Fe2O3-CaO oxygen carriers and the interaction of iron oxides with CaO during chemical looping combustion and H2 production[J]. Energy Procedia,2014,63:87−97. doi: 10.1016/j.egypro.2014.11.010
    [15] SIRIWARDANE R, RILEY J, TIAN H, RICHARDS G. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid-solid reactions[J]. Appl Energy,2016,165:952−966. doi: 10.1016/j.apenergy.2015.12.085
    [16] ZHANG J Z, HE T, WANG Z Q, ZHU M, ZHANG K, LI B, WU J H. The search of proper oxygen carriers for chemical looping partial oxidation of carbon[J]. Appl Energy,2017,190:1119−1125. doi: 10.1016/j.apenergy.2017.01.024
    [17] SUN Z, WU X D, RUSSELL C K, DYAR M D, SKLUTE E C, TOAN S, FAN M H, DUAN L B, XIANG W G. Synergistic enhancement of chemical looping-based CO2 splitting with biomass cascade utilization using cyclic stabilized Ca2Fe2O5 aerogel[J]. J Mater Chem A,2019,7(3):1216−1226. doi: 10.1039/C8TA10277E
    [18] WEI G Q, FENG J, HOU Y L, LI F Z, LI W Y, HUANG Z, ZHENG A Q, LI H B. Ca-enhanced hematite oxygen carriers for chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting[J]. Fuel,2021,285(6):119−125.
    [19] WANG L, LIN Y, HUANG Z, ZENG K, HUANG H Y. Conversion of carbon dioxide to carbon monoxide: Two-step chemical looping dry reforming using Ca2Fe2O5-Zr0.5Ce0.5O2 composite oxygen carriers[J]. Fuel,2022,322:124182. doi: 10.1016/j.fuel.2022.124182
    [20] ABAD A, ADÁNEZ J, LABIANO F G, DIEGO L F, GAYÁN P, CELAYA J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion[J]. Chem Eng Sci,2007,62:533−549. doi: 10.1016/j.ces.2006.09.019
    [21] RILEY J, SIRIWARDANE R, TIAN H, BENINCOSA W, POSTON J. Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer[J]. Appl Energy,2017,201:94−110. doi: 10.1016/j.apenergy.2017.05.101
    [22] LI G, LV X W, DING C Y, ZHOU X G, ZHONG D P, QIU G B. Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications[J]. Appl Energy,2020,262:114604. doi: 10.1016/j.apenergy.2020.114604
    [23] CHEN L Y, BAO J H, KONG L, COMBS M, NIKOLIC H S, FAN Z, LIU K L. The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion[J]. Appl Energy,2016,184:9−18. doi: 10.1016/j.apenergy.2016.09.085
    [24] ZHANG Y, SONG K Y. Thermal and chemical characteristics of torrefied biomass derived from a generated volatile atmosphere[J]. Energy,2018,165:235−245.
    [25] XU J J, ZUO H B, WANG G W, ZHANG J L, GUO K, LIANG W. Gasification mechanism and kinetics analysis of coke using distributed activation energy model (DAEM)[J]. Appl Therm Eng,2019,152:605−614. doi: 10.1016/j.applthermaleng.2019.02.104
    [26] ŠKVÁRA F, ŠESTÁK J J. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method[J]. J Therm Anal,1975,8(3):477−489. doi: 10.1007/BF01910127
    [27] 杨正红, THOMMES Mattias. 气体吸附法进行孔径分析进展—密度函数理论(DFT)及蒙特卡洛法(MC)的应用[J]. 中国粉体技术,2005,11:62−66.

    YANG Zheng-hong, THOMMES Mattias. Progress in pore size analysis by adsorption method-application of Density function Theory (DFT) and Monte Carlo method (MC)[J]. China Powder Sci Technol,2005,11:62−66.
    [28] LI L W, HUANG Y Q, ZHANG D Y, ZHENG A Q, ZHAO Z L, XIA M Z, LI H B. Uncovering structure-reactivity relationships in pyrolysis and gasification of biomass with varying severity of torrefaction[J]. ACS Sustainable Chem Eng,2018,6(5):6008−6017. doi: 10.1021/acssuschemeng.7b04649
    [29] MATTHEWS M, PIMENTA M, DRESSELHAUS G, DRESSELHAUS M S, ENDO M. Origin of dispersive effects of the Raman D band in carbon materials[J]. Phys Rev B,1999,59:R6585−R6588. doi: 10.1103/PhysRevB.59.R6585
    [30] SUN Z, CHEN S Y, HU J, CHEN A, RONY A H, RUSSELL C K, XIANG W G, FAN M H, DYAR M. D, DKLUTE E C. Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process[J]. Appl Energy,2018,211:431−442. doi: 10.1016/j.apenergy.2017.11.005
    [31] 姚娜. 生物质快速热解特性试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    YAO Na. Experimental study on the behavior of biomass fast pyrolysis[D]. Harbin: Harbin Institute of Technology, 2008.
    [32] 杜胜磊. 生物质热化学利用过程中无机矿物质转化规律及灰熔融特性研究[D]. 武汉: 华中科技大学, 2014.

    DU Sheng-lei. Fundamental study on transformation behavior of inorganic components during thermochemical conversion of biomass and ash fusion characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2014.
    [33] JABER J O, PROBERT S D. Pyrolysis and gasification kinetics of Jordanian oil-shales[J]. Appl Energy,1999,63(4):269−286. doi: 10.1016/S0306-2619(99)00033-1
    [34] LAKRA R, KIRAN M S, USHA R, MOHAN R, SUNDARESAN R, KORRAPATI P S. Enhanced stabilization of collagen by furfural[J]. Int J Biol Macromol,2014,65:252−257. doi: 10.1016/j.ijbiomac.2014.01.040
    [35] LIU L, LI Z S, WANG Y, LI Z A, LARRING Y, CAI N S. Industry-scale production of a perovskite oxide as oxygen carrier material in chemical looping[J]. Chem Eng J,2021,431:134006.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  183
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-15
  • 修回日期:  2023-03-05
  • 录用日期:  2023-03-08
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回