留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZSM-11和ZSM-5分子筛孔道结构差异对其甲醇制烯烃催化性能的影响

原凯 贾翔宇 王森 樊升 何诗沛 王鹏飞 董梅 秦张峰 樊卫斌 王建国

原凯, 贾翔宇, 王森, 樊升, 何诗沛, 王鹏飞, 董梅, 秦张峰, 樊卫斌, 王建国. ZSM-11和ZSM-5分子筛孔道结构差异对其甲醇制烯烃催化性能的影响[J]. 燃料化学学报(中英文), 2023, 51(11): 1652-1662. doi: 10.1016/S1872-5813(23)60361-5
引用本文: 原凯, 贾翔宇, 王森, 樊升, 何诗沛, 王鹏飞, 董梅, 秦张峰, 樊卫斌, 王建国. ZSM-11和ZSM-5分子筛孔道结构差异对其甲醇制烯烃催化性能的影响[J]. 燃料化学学报(中英文), 2023, 51(11): 1652-1662. doi: 10.1016/S1872-5813(23)60361-5
YUAN Kai, JIA Xiang-yu, WANG Sen, FAN Sheng, HE Shi-pei, WANG Peng-fei, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Effect of framework structure of ZSM-11 and ZSM-5 zeolites on their catalytic performance in the conversion of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1652-1662. doi: 10.1016/S1872-5813(23)60361-5
Citation: YUAN Kai, JIA Xiang-yu, WANG Sen, FAN Sheng, HE Shi-pei, WANG Peng-fei, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Effect of framework structure of ZSM-11 and ZSM-5 zeolites on their catalytic performance in the conversion of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1652-1662. doi: 10.1016/S1872-5813(23)60361-5

ZSM-11和ZSM-5分子筛孔道结构差异对其甲醇制烯烃催化性能的影响

doi: 10.1016/S1872-5813(23)60361-5
基金项目: 国家重点研发计划(2020YFA0210900),国家自然科学基金(U1910203,21991090,21991092,22272195,U22A20431)和中国科学院青年创新促进会项目(2021172)资助
详细信息
    通讯作者:

    E-mail: wangsen@sxicc.ac.cn

    qzhf@sxicc.ac.cn

  • 中图分类号: O643.3

Effect of framework structure of ZSM-11 and ZSM-5 zeolites on their catalytic performance in the conversion of methanol to olefins

Funds: The project was supported by the National Key R&D Program of China (2020YFA0210900), National Natural Science Foundation of China (U1910203, 21991090, 21991092, 22272195, U22A20431) and Youth Innovation Promotion Association CAS (2021172)
  • 摘要: 本工作采用水热合成法制备了具有相似形貌、粒径、织构性质和酸性的ZSM-11和ZSM-5分子筛,借助多种表征技术研究了这两类分子筛的十元环孔道结构差异对其甲醇转化制烯烃(MTO)催化性能的影响。结果表明,由于ZSM-5的正弦孔道比ZSM-11的直孔道的扩散阻力大,反应中间体和产物分子在ZSM-5分子筛上的停留时间较长,强化了长链烯烃氢转移反应,导致生成更多的甲基苯物种,从而增强了芳烃循环的贡献;相比之下,ZSM-11分子筛的直孔道限制了长链烯烃的氢转移反应,减少了多甲基苯物种的产生,有利于提高烯烃循环的贡献。因此,与具有相似形貌、粒径、织构性质和酸性的ZSM-5-60分子筛相比,ZSM-11-60分子筛对MTO反应具有更长的催化寿命(98.3 h对比65.4 h)和更高的丙烯选择性(34.6%对比27.4%)。这些结果深化了对分子筛MTO催化性能与其孔道结构关系的认识,有助于新型高效的甲醇转化分子筛催化剂的开发和反应过程的探索。
  • FIG. 2764.  FIG. 2764.

    FIG. 2764.  FIG. 2764.

    图  1  ZSM-11和ZSM-5分子筛的XRD谱图

    Figure  1  XRD patterns of ZSM-11 and ZSM-5 zeolites

    图  2  ZSM-11和ZSM-5分子筛的SEM(嵌入为粒径分布)和TEM照片

    Figure  2  SEM (insert: particle size distribution) and TEM images of ZSM-11 and ZSM-5 zeolites

    图  3  ZSM-11和ZSM-5分子筛的(a)N2吸附-脱附曲线和(b)环己烷蒸气吸附曲线

    Figure  3  (a) N2 adsorption-desorption isotherms and (b) cyclohexane vapor adsorption isotherms of ZSM-11 and ZSM-5 zeolites

    图  4  ZSM-11和ZSM-5分子筛的(a)NH3-TPD,(b)Py-IR,(c)dTBPy-IR和(d)分峰拟合后的硅核磁谱图

    Figure  4  (a) NH3-TPD profiles, (b) Py-IR spectra, (c) dTBPy-IR spectra and (d) deconvoluted 29Si MAS NMR spectra of ZSM-11 and ZSM-5 zeolites

    In the deconvoluted 29Si MAS NMR spectra, the weak peak at −106 is attributed to the Q3 (Si(OAl)1(OSi)3), whereas four peaks around −110.4, −112.3, −113.7 and −115.7, and at −110, −112.5, −115 and −117.5 are assigned to Q4 (Si(0Al)) of ZSM-11 and ZSM-5, respectively

    图  5  ZSM-11和ZSM-5分子筛的铝核磁谱图及分峰拟合后的谱图

    Figure  5  27Al MAS NMR spectra as well as deconvoluted ones of ZSM-11 and ZSM-5 zeolites

    图  6  Co-ZSM-11和Co-ZSM-5分子筛的漫反射紫外可见光光谱谱图

    Figure  6  DR UV-vis spectra Co-ZSM-11 and Co-ZSM-5 zeolites

    图  7  ZSM-11-60 (a)、ZSM-5-60 (b)、ZSM-11-30 (c)和ZSM-5-30 (d)分子筛催化MTO反应中甲醇转化率、产物选择性

    Figure  7  Methanol conversion and product selectivity with the time on stream for MTO over ZSM-11-60 (a), ZSM-5-60 (b), ZSM-11-30 (c) and ZSM-5-30 (d)

    图  8  ZSM-11和ZSM-5分子筛催化MTO反应时的C4-HTI (a)、C5-HTI (b)、(P−E)/E (c)随反应时间的变化以及失活后的ZSM-11和ZSM-5分子筛的热重曲线 (d)

    Figure  8  A comparison of ZSM-11 and ZSM-5 as the catalyst for MTO in the C4 hydride transfer index (C4-HTI) (a), the C5 hydride transfer index (C5-HTI) (b), (P−E)/E ratio (c), and TGA curves (d) of spent catalysts. C4/5-HTI is denoted as the ratio of (C4/5 0 )/( C4/5 0 + C4/5 = )

    图  9  在450 ℃WHSV为4.8 h−1的条件下MTO反应20 min后残留在ZSM-11和ZSM-5分子筛上有机物种的GC-MS谱图

    Figure  9  GC-MS chromatograms of retained organic species over ZSM-11 and ZSM-5 zeolites after consecutively conducting the MTO reaction at 450 ℃ for 20 min with a methanol WHSV of 4.8 h−1

    图  10  在350 ℃下连续流动 13CH3OH反应3 min,ZSM-11和ZSM-5分子筛上残留有机物种的 13C MAS NMR谱图

    Figure  10  13C MAS NMR spectra of retained organic species over ZSM-11 and ZSM-5 zeolites after continuous flow 13CH3OH reaction at 350 ℃ for 3 min, and the feed rates of Ar and 13CH3OH are 40 and 0.1 mL/min, respectively

    图  11  在335 ℃下MTO反应不同时间后ZSM-11和ZSM-5分子筛上碳质物种含量

    Figure  11  Content of carbonaceous species over ZSM-11 and ZSM-5 zeolites after consecutively conducting the MTO reaction at 335 ℃ for different time, and the feed rates of Ar and CH3OH are 40 and 0.02 mL/min respectively

    表  1  ZSM-11和ZSM-5分子筛的织构性质

    Table  1  Textural properties of ZSM-11 and ZSM-5 zeolites

    ZeoliteCrystal size /
    μm
    Surface area /
    (m2·g−1)
    Pore volume /
    (cm3·g−1)
    totalmicroexttotalmicromeso
    ZSM-11-600.62336242940.250.120.13
    ZSM-5-600.63337249880.230.110.12
    下载: 导出CSV

    表  2  ZSM-11和ZSM-5分子筛的元素组成和酸性性质

    Table  2  Elemental composition and acidic properties of ZSM-11 and ZSM-5 zeolites

    ZeoliteSi/Al by ICPSi/AlFAcidity by NH3-TPD /(μmol·g−1)Acidity by Py-IR or dTBPy-IR /(μmol·g−1)
    strongweaktotalBrønstedLewistotaldTBPy-Brønsted
    ZSM-11-6051542281163441754321819
    ZSM-5-6048522171583751755523020
    Note: framework Si/AlF ratio is derived from the 29Si MAS NMR spectra [19]
    下载: 导出CSV

    表  3  ZSM-11和ZSM-5分子筛 27Al MAS NMR分峰拟合信号峰面积占总峰面积比例

    Table  3  Proportion of integrated peaks obtained by deconvolution of the 27Al MAS NMR spectra of ZSM-11 and ZSM-5 zeolites

    ZeoliteAlF /%AlEF /%Aluminum distribution /%
    48.5–49.053.0–53.255.6–56.058.0–58.1
    ZSM-11-6099.50.56.438.145.110.4
    ZSM-5-6099.20.86.442.939.611.1
    下载: 导出CSV

    表  4  Co-ZSM-11和Co-ZSM-5分子筛中不同类型铝物种的分布比

    Table  4  Distribution of different types of Al species in Co-ZSM-11 and Co-ZSM-5 zeolites

    ZeoliteAlpairs /%Alsingle /%Aluminum distribution /%
    αβγ
    ZSM-11-60643615.663.620.8
    ZSM-5-60584212.463.524.1
    Note: contents of Alpairs and Alsingle were calculated as [Alpairs]= 2 × [Co] and [Alsingle] = [Altotal] – [Alpairs], where [Altotal] and [Co] are the contents of Al and Co in the Co-ZSM-11/Co-ZSM-5 samples, respectively, measured by ICP-OES
    下载: 导出CSV

    表  5  ZSM-11和ZSM-5的 MTO催化反应

    Table  5  Catalytic results of ZSM-11 and ZSM-5 zeolites in MTO

    ZeolitexM /%Product distribution /%(P−E)/ETON
    × 104
    Life time /h
    C1 0C2–5 0C2 =C3 =C4 =C5 =C6 + arom.
    ZSM-11-6099.92.19.38.334.624.49.02.99.43.28.198.3
    ZSM-5-6099.92.617.69.727.417.16.13.815.71.85.365.4
    ZSM-11-3099.94.519.18.924.615.34.73.619.31.82.348.7
    ZSM-5-3099.94.324.011.020.412.03.63.920.80.91.541.2
    Note: methanol conversion and product distribution reported were acquired at half life time of each zeolite catalyst
    下载: 导出CSV
  • [1] CHANG C D, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal,1977,47(2):249−259. doi: 10.1016/0021-9517(77)90172-5
    [2] OLSBYE U, SVELLE S, BJORGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed,2012,51(24):5810−5831. doi: 10.1002/anie.201103657
    [3] TIAN P, WEI Y X, YE M, LIU Z M. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catal,2015,5(3):1922−1938. doi: 10.1021/acscatal.5b00007
    [4] SHI J, WANG Y D, YANG W M, TANG Y, XIE Z K. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes[J]. Chem Soc Rev,2015,44(24):8877−8903. doi: 10.1039/C5CS00626K
    [5] YARULINA I, CHOWDHURY A D, MEIRER F, WECKHUYSEN B M, GASCON J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nat Catal,2018,1(6):398−411. doi: 10.1038/s41929-018-0078-5
    [6] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species[J]. J Catal,2007,249(2):195−207. doi: 10.1016/j.jcat.2007.04.006
    [7] SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc,2006,128(46):14770−14771. doi: 10.1021/ja065810a
    [8] WANG Q, CUI Z M, CAO C Y, SONG W G. 0.3 Å makes the difference: Dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites[J]. J Phys Chem C,2011,115(50):24987−24992. doi: 10.1021/jp209182u
    [9] CHU Y Y, SUN X Y, YI X F, DING L H, ZHENG A M, DENG F. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J]. Catal Sci Technol,2015,5(7):3507−3517. doi: 10.1039/C5CY00312A
    [10] LIU Z Q, CHU Y Y, TANG X M, HUANG L, LI G C, YI X F, ZHENG A M. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J]. J Phys Chem C,2017,121(41):22872−22882. doi: 10.1021/acs.jpcc.7b07374
    [11] SHEN Y F, LE T T, FU D L, SCHMIDT J E, FILEZ M, WECKHUYSEN B M, RIMER J D. Deconvoluting the competing effects of zeolite framework topology and diffusion path length on methanol to hydrocarbons reaction[J]. ACS Catal,2018,8(12):11042−11053. doi: 10.1021/acscatal.8b02274
    [12] WANG S, WANG P F, QIN Z F, CHEN Y Y, DONG M, LI J F, ZHANG K, LIU P, WANG J G, FAN W B. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11[J]. ACS Catal,2018,8(12):5485−5505.
    [13] YUAN K, JIA X Y, WANG S, FAN S, HE S P, WANG P F, QIN Z F, DONG M, FAN W B, WANG J G. Regulating the distribution of acid sites in ZSM-11 zeolite with different halogen anions to enhance its catalytic performance in the conversion of methanol to olefins[J]. Microporous Mesoporous Mater,2022,341:112051. doi: 10.1016/j.micromeso.2022.112051
    [14] WANG S, LI Z K, QIN Z F, DONG M, LI J F, FAN W B, WANG J G. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion[J]. Chin J Catal,2021,42(7):1126−1136. doi: 10.1016/S1872-2067(20)63732-9
    [15] NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater,2014,197:252−261. doi: 10.1016/j.micromeso.2014.06.027
    [16] CORMA A, FORNES V, FORNI L, MARQUEZ F, MARTINEZ-TRIGUERO J, MOSCOTTI D. 2, 6-di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites[J]. J Catal,1998,179(2):451−458. doi: 10.1006/jcat.1998.2233
    [17] GORA-MAREK K, TARACH K, CHOI M. 2, 6-Di-tert-butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites[J]. J Phys Chem C,2014,118(23):12266−12274. doi: 10.1021/jp501928k
    [18] DEDECEK J, SOBALIK Z, WICHTERLOVA B. Siting and distribution of framework aluminium atoms in silicon-rich zeolites and impact on catalysis[J]. Cat Rev-Sci Eng,2012,54(2):135−223. doi: 10.1080/01614940.2012.632662
    [19] LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting[J]. ACS Catal,2016,6(11):7311−7325. doi: 10.1021/acscatal.6b01771
    [20] ZENG S, XU S T, GAO S S, GAO M B, ZHANG W N, WEI Y X, LIU Z M. Differentiating diffusivity in different channels of ZSM-5 zeolite by Pulsed Field Gradient (PFG) NMR[J]. ChemCatChem,2020,12(2):463−468. doi: 10.1002/cctc.201901689
    [21] MADEIRA F F, TAYEB K B, PINARD L, VEZIN H, MAURY S, CADRAN N. Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role[J]. Appl Catal A: Gen,2014,443-444:171−180.
    [22] WANG S, ZHANG L, LI S Y, QIN Z F, SHI D Z, HE S P, YUAN K, WANG P F, ZHAO T S, FAN S B, DONG M, LI J F, FAN W B, WANG J G. Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins[J]. J Catal,2019,377:81−97. doi: 10.1016/j.jcat.2019.07.028
    [23] XUE Y F, LI J F, WANG P F, CUI X J, ZHENG H Y, NIU Y L, DONG M, QIN Z F, WANG J G, FAN W B. Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins[J]. Appl Catal B: Environ,2021,280:119391. doi: 10.1016/j.apcatb.2020.119391
    [24] WANG C, WANG Q, XU J, QI G D, GAO P, WANG W Y, ZOU Y Y, FENG N D, LIU X L, DENG F. Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C–27Al solid-state NMR spectroscopy[J]. Angew Chem Int Ed,2016,55(7):2507−5511. doi: 10.1002/anie.201510920
    [25] PARK J W, KIM S J, SEO M, KIM S Y, SUGI Y, SEO G. Product selectivity and catalytic deactivation of MOR zeolites with different acid site densities in methanol-to-olefin (MTO) reactions[J]. Appl Catal A: Gen,2008,349:76−85. doi: 10.1016/j.apcata.2008.07.006
    [26] WANG J B, WEI Y X, LI J Z, XU S T, ZHANG W N, HE Y L, CHEN J R, ZHANG M Z, ZHENG A M, DENG F, GUO X W, LIU Z M. Direct observation of methylcyclopentenyl cations (MCP + ) and olefin generation in methanol conversion over TON zeolite[J]. Catal Sci Technol,2016,6(1):89−97. doi: 10.1039/C5CY01420D
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1487
  • HTML全文浏览量:  130
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-04-10
  • 录用日期:  2023-04-11
  • 网络出版日期:  2023-04-25
  • 刊出日期:  2023-11-13

目录

    /

    返回文章
    返回