留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界甲烷在活性炭与典型金属有机框架材料上的吸附平衡

郭栋 李姗姗 王虎 郑青榕

郭栋, 李姗姗, 王虎, 郑青榕. 超临界甲烷在活性炭与典型金属有机框架材料上的吸附平衡[J]. 燃料化学学报(中英文), 2023, 51(12): 1879-1888. doi: 10.1016/S1872-5813(23)60364-0
引用本文: 郭栋, 李姗姗, 王虎, 郑青榕. 超临界甲烷在活性炭与典型金属有机框架材料上的吸附平衡[J]. 燃料化学学报(中英文), 2023, 51(12): 1879-1888. doi: 10.1016/S1872-5813(23)60364-0
GUO Dong, LI Shan-shan, WANG Hu, ZHENG Qing-rong. Adsorption equilibrium of methane on activated carbon and typical metal organic frameworks[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1879-1888. doi: 10.1016/S1872-5813(23)60364-0
Citation: GUO Dong, LI Shan-shan, WANG Hu, ZHENG Qing-rong. Adsorption equilibrium of methane on activated carbon and typical metal organic frameworks[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1879-1888. doi: 10.1016/S1872-5813(23)60364-0

超临界甲烷在活性炭与典型金属有机框架材料上的吸附平衡

doi: 10.1016/S1872-5813(23)60364-0
基金项目: 国家自然科学基金(51979121),福建省自然科学基金重点项目(2020J02041)和厦门市科技计划项目(3502Z20226011)资助
详细信息
    作者简介:

    郭栋(1999—),硕士研究生,研究方向:从事燃气(氢气、甲烷)吸附储存技术研究。E-mail:guod1201@163.com

    通讯作者:

    E-mail: qrzheng816@sina.com, zhengqr@jmu.edu.cn

  • 中图分类号: O647.32

Adsorption equilibrium of methane on activated carbon and typical metal organic frameworks

Funds: The project was supported by National Natural Science Foundation of China (51979121), Natural Science Foundation of Fujian Province (2020J02041) and Xiamen Municipal Bureau of Sciences & Technology (3502Z20226011)
  • 摘要: 针对吸附天然气(ANG)应用的吸附剂研发,试制了SAC-02活性炭、HKUST-1和MIL-101(Cr),通过微观形貌观察、氮气物理吸附和293.15–313.15 K、0–4 MPa条件下甲烷吸附等温线测定,采用Toth、D-A和Ono-Kondo等方程对实验数据进行关联预测比较,由等量吸附热和吸附相密度分析这些吸附剂样品对甲烷的吸附性能。结果表明,在测试范围内,Toth方程预测的吸附平衡数据精度最高,可用于ANG系统的吸附平衡分析;甲烷在MIL-101(Cr)上的平均等量吸附热最大,吸附相密度比液态甲烷的密度小但随压力的增高而增大,比活性炭和HKUST-1更适合于甲烷吸附。
  • FIG. 2814.  FIG. 2814.

    FIG. 2814.  FIG. 2814.

    图  1  实验装置示意图

    Figure  1  Schematic design of the experimental setup for measuring methane adsorption equilibrium

    图  2  HKUST-1 的 XRD谱图(a)和晶体颗粒的 SEM 照片(b)

    Figure  2  XRD pattern (a) and SEM image (b) of the HKUST-1 sample

    图  3  MIL-101(Cr)的 XRD谱图(a)和晶体颗粒的 SEM照片(b)

    Figure  3  XRD pattern (a) and SEM image (b) of the MIL-101(Cr) sample

    图  4  77.15 K时氮在样品上的吸附等温线(a)及其孔径分布(b)

    Figure  4  Isotherms of nitrogen adsorption at 77.15 K (a) and the pore size distribution curves of three samples (b)

    图  5  甲烷在 SAC-02 活性炭 (a)、HKUST-1(b)和 MIL-101(Cr) (c)上的低压吸附等温线

    Figure  5  Adsorption isotherms of methane at a low pressure on activated carbon SAC-02 (a), HKUST-1 (b) and MIL-101(Cr) (c)

    图  6  甲烷在 SAC-02 活性炭(a)、HKUST-1(b)和 MIL-101 (Cr) (c)上的高压吸附等温线

    Figure  6  Adsorption isotherms of methane at a high pressure on activated carbon SAC-02 (a), HKUST-1 (b) and MIL-101(Cr) (c)

    图  7  模型预测甲烷在 SAC-02 活性炭(a)、HKUST-1(b) 和 MIL-101 (Cr)(c) 上吸附平衡数据的相对误差

    Figure  7  Relative errors of adsorption equilibrium data predicted by different models on the activated carbon SAC-02 (a), HKUST-1 (b) and MIL-101(Cr) (c)

    图  8  甲烷在吸附剂上的等量吸附热

    Figure  8  Isosteric heats of methane adsorption on the samples

    图  9  303.15 K时甲烷在吸附剂上的吸附相密度

    Figure  9  Densities of the adsorbed methane phase on different samples at 303.15 K

    表  1  吸附剂的结构参数

    Table  1  Textural properties of the samples

    SampleSpecific surface area /
    (m2·g−1)
    Average pore size /
    nm
    Micropore volume / (cm3·g−1)
    SAC-0214841.20.58
    HKUST-118500.700.77
    MIL-101(Cr)31411.861.09
    下载: 导出CSV

    表  2  甲烷在吸附剂上吸附的热力学参数

    Table  2  Thermodynamic parameters of methane adsorption on the samples

    AdsorbentT /
    K
    Hp /(mmol·Pa−1·g−1)qst0 /(kJ·mol−1)Isosteric adsorption heat /(kJ·mol−1)
    SAC-02293.150.0095823.95224.035
    303.150.0078624.035
    313.150.0054424.118
    HKUST-1293.150.0107726.60126.685
    303.150.0082426.685
    323.150.0057126.768
    MIL-101(Cr)293.150.0060829.41829.501
    303.150.0042229.501
    313.150.0035829.584
    下载: 导出CSV

    表  3  甲烷在吸附剂上吸附平衡的Toth方程拟合参数

    Table  3  Parameters fitted with the Toth equation for methane adsorption on the samples

    SampleT /
    K
    b /
    MPa−1
    tnm /(mmol∙g−1)va /(cm3·g−1)
    SAC-02293.152.7620.242648.010.7241
    303.152.1030.284342.000.8526
    313.150.8310.316135.850.8253
    HKUST-1293.150.8370.294036.890.2164
    303.150.2500.536726.861.6300
    313.150.5460.66606.510.4563
    MIL-101(Cr)293.150.1110.4549141.501.9700
    303.150.1200.615587.852.5360
    313.150.1590.739050.631.3440
    下载: 导出CSV

    表  4  甲烷在吸附剂上吸附平衡的D-A方程拟合参数

    Table  4  Parameters fitted with the D-A equation for methane adsorption on three samples

    SampleT /
    K
    n0 /(mmol∙g−1)E /(J∙mol−1)q
    SAC-02293.156.81685801.816
    303.156.68685081.662
    313.156.10485011.931
    HKUST-1293.154.86079821.645
    303.154.64077691.329
    313.154.40184201.707
    MIL-101(Cr)293.1521.21054851.468
    303.1518.66057421.585
    313.1518.99061121.614
    下载: 导出CSV

    表  5  甲烷在吸附剂上吸附平衡的Ono-Kondo方程参数

    Table  5  Parameters of the Ono-Kondo equation for methane adsorption on different samples

    SampleT /
    K
    $ C $ /(mmol·g−1)$ {-(\varepsilon }_{{\rm{A}}}/k) $/
    K
    $ {\rho }_{{\rm{mc}}} $ /(mol·L−1)
    SAC-02293.153.995893.2421.03
    303.153.670916.7520.51
    313.153.769900.7019.99
    HKUST-1293.153.0881222.0622.52
    303.153.0301206.6521.96
    313.152.8821225.5721.40
    MIL-101(Cr)293.1529.481242.2424.77
    303.1513.561289.0724.15
    313.1513.761260.7323.54
    下载: 导出CSV
  • [1] ALHASAN S, CARRIVEAU R, TING D S K. A review of adsorbed natural gas storage technologies[J]. Int J Environ Sci Technol,2016,73(3):343−356.
    [2] KUMAR K V, PREUSS K, TITIRICI M, RODRÍGUEZ-REINOSO F. Nanoporous materials for the onboard storage of natural gas[J]. Chem Rev,2017,117(3):1796−1825. doi: 10.1021/acs.chemrev.6b00505
    [3] KAYAL S, SUN B, CHAKRABORTY A. Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks)[J]. Energy,2015,91:772−781. doi: 10.1016/j.energy.2015.08.096
    [4] ZHANG X, LIN R B, ALOTHMAN Z A, ALDUHAISH O, YILDIRIM T, ZHOU W, LI J R, CHEN B L. Promotion of methane storage capacity with metal-organic frameworks of high porosity[J]. Inorg Chem Front,2023,10(2):454−459. doi: 10.1039/D2QI02255A
    [5] SAHA D, FIEBACK T M, TOM B. Characteristics of methane adsorption in micro-mesoporous carbons at low and ultra-high pressure[J]. Energy Technol,2016,4(11):1392−1400. doi: 10.1002/ente.201600172
    [6] SHIRAZANI M T, BAKHSHI H, RASHIDI A, TAGHIZADEH M. Starch-based activated carbon micro-spheres for adsorption of methane with superior performance in ANG technology[J]. J Environ Chem Eng,2020,8(4):103910. doi: 10.1016/j.jece.2020.103910
    [7] SONG Y Q, ZHOU X L, WANG J A. Adsorption performance of activated carbon for methane with low concentration at atmospheric pressure[J]. Energ Source Part A,2021,43(11):1337−1347. doi: 10.1080/15567036.2019.1636903
    [8] DENNING S, MAJID A, LUCERO J M, CRAWFORD J M, CARREON M A, KOH C A. Metal-organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity[J]. ACS Appl Mater Interfaces,2020,12(47):53510−53518. doi: 10.1021/acsami.0c15675
    [9] BIMBO N, SMITH J P, AGGARWAL H, PHYSICK A J, PUGSLEY A, BARBOUR L J, TING V P, MAYS T J. Kinetics and enthalpies of methane adsorption in microporous materials AX-21, MIL-101 (Cr) and TE7[J]. Chem Eng Res Des,2021,169:153−164. doi: 10.1016/j.cherd.2021.03.003
    [10] TSIVION E, HEAD-GORDON M. Methane storage: molecular mechanisms underlying room temperature adsorption in Zn4O(BDC)(3) (MOF-5)[J]. J Phys Chem C,2017,121(22):12091−12100. doi: 10.1021/acs.jpcc.7b04246
    [11] HU B, CHENG Y P, WANG L, ZHANG K Z, HE X X, YI M H. Experimental study on influence of adsorption equilibrium time on methane adsorption isotherm and Langmuir parameter[J]. Adv Powder Technol,2021,32(11):4110−4119. doi: 10.1016/j.apt.2021.09.015
    [12] ZHOU L, ZHOU Y. Linearization of adsorption isotherms for high-pressure applications[J]. Chem Eng Sci,1998,53(14):2531−2536. doi: 10.1016/S0009-2509(98)00065-7
    [13] RAHMAN K A, CHAKRABORTY A, SAHA B B, NG K C. On thermodynamics of methane carbonaceous materials adsorption[J]. Int J Heat Mass Transf,2012,55(4):565−573. doi: 10.1016/j.ijheatmasstransfer.2011.10.056
    [14] 郑青榕, BIRKETT G, DO D D. 甲烷在活性炭上吸附的实验及理论分析[J]. 天然气化工(C1化学与化工),2009,34(1):41−45.

    ZHENG Qing-rong, BIRKETT G, DO D D. Experimental and theoretical analysis of methane adsorption on activated carbon[J]. Nat Gas Ind,2009,34(1):41−45.
    [15] 朱子文, 郑青榕, 冯玉龙, 曾斌. 甲烷在活性炭上的吸附平衡研究[J]. 天然气化工(C1化学与化工),2015,40(2):39−43.

    ZHU Zi-wen, ZHENG Qing-rong, FENG Yu-long, ZENG Bin. Study on the adsorption equilibrium of methane on activated carbon[J]. Nat Gas Ind,2015,40(2):39−43.
    [16] 张维东, 郑青榕, 王泽浩, 张轩. 甲烷在MOF-5和MOF-199上的吸附平衡[J]. 天然气化工(C1化学与化工),2019,44(6):45−51.

    ZHANG Wei-dong, ZHENG Qing-rong, WANG Ze-hao, ZHANG Xuan. Adsorption equilibria of methane on MOF-5 and MOF-199[J]. Nat Gas Ind,2019,44(6):45−51.
    [17] 廖圣平, 郑青榕, 仵梦博, 张轩. 甲烷在MIL-101(Cr)和AX-21上吸附平衡的比较分析[J]. 天然气化工(C1化学与化工),2021,46(5):81−87.

    LIAO Sheng-ping, ZHENG Qing-rong, WU Meng-bo, ZHANG Xuan. Comparative analysis of methane adsorption equilibria on MIL-101(Cr) and AX-21[J]. Nat Gas Ind,2021,46(5):81−87.
    [18] 解晨, 郑青榕. 甲烷在活性炭上的超临界温度吸附实验及理论分析[J]. 天然气化工(C1化学与化工),2012,37(1):40−44.

    XIE Chen, ZHENG Qing-rong. Experimental and theoretical analysis of supercritical temperature adsorption of methane on activated carbon[J]. Nat Gas Ind,2012,37(1):40−44.
    [19] 张英, 马蕊英, 赵亮, 王海洋, 孙兆松. 金属有机骨架材料HKUST-1的制备及其甲烷吸附性能[J]. 石油化工,2017,46(7):884−887.

    ZHANG Yin, MA Rui-ying, ZHAO Liang, WANG Hai-yang, SUN Zhao-song. Preparation of metal-organic skeleton material HKUST-1 and its methane adsorption performance[J]. Petrk Chen Technol,2017,46(7):884−887.
    [20] YU Z W, DESCHAMPS J, HAMON L, PRABHAKARAN P K, PRE P. Hydrogen adsorption and kinetics in MIL-101(Cr) and hybrid activated carbon-MIL-101(Cr) materials[J]. Int J Hydrogen Energy,2017,42(12):8021−8031. doi: 10.1016/j.ijhydene.2017.02.192
    [21] FEREY G, MELLOT-DRAZNIEKS C, SERRE C, MILLANGE F, DUTOUR J, SURBLE S, MARGIOLAKI I. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040−2042. doi: 10.1126/science.1116275
    [22] CLARK A. The Theory of Adsorption and Catalysis[M]. New York: Academic Press, 1970: 160–271.
    [23] MEEKS O R, RYBOLT T R. Correlations of adsorption energies with physical and structural properties of adsorbate molecules[J]. J Colloid Interface Sci,1997,196(1):103−109. doi: 10.1006/jcis.1997.5198
    [24] MENON P G. Adsorption at high pressures[J]. Chem Rev,1968,68(3):277−294. doi: 10.1021/cr60253a002
    [25] LI M, GU A Z, LU X S, WANG R S. Determination of the adsorbate density from supercritical gas adsorption equilibrium data[J]. Carbon,2003,41(3):585−588. doi: 10.1016/S0008-6223(02)00356-1
    [26] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chem Eng Sci,1972,27(6):1197−1203. doi: 10.1016/0009-2509(72)80096-4
    [27] LI J, CHEN Z, WU K, WANG K, LUO J, FENG D, QU S, LI X. A multi-site model to determine supercritical methane adsorption in energetically heterogeneous shales[J]. Chem Eng J,2018,349:438−455.
    [28] DUBININ M M. The potential theory of adsorption of gases and vapors for adsorption with energetically nonuniform surface[J]. Chem Rev, 1960, 60(2): 235–241.
    [29] BENARD P, CHAHINE R. Modeling of high-pressure adsorption isotherms above the critical temperature on microporous adsorbents: Application to methane[J]. Langmuir,1997,13(4):808−813. doi: 10.1021/la960843x
    [30] 郑青榕, 顾安忠, 杨晓东, 林文胜, 鲁雪生. 氢气在炭狭缝孔内吸附的预测[J]. 化学物理学报,2001,14(6):675−680.

    ZHENG Qing-rong, GU An-zhong, YANG Xiao-dong, LIN Wen-sheng, LU Xue-sheng. Prediction of hydrogen adsorption in carbon slit pores[J]. Chin J Chem Phys,2001,14(6):675−680.
    [31] 郑青榕. 多壁碳纳米管吸附储氢研究[D]. 上海: 上海交通大学, 2002.

    ZHENG Qing-rong. A study of hydrogen storage by adsorption on multi-walled carbon nanotube[D]. Shanghai: Shanghai Jiao Tong University, 2002.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  57
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-18
  • 修回日期:  2023-04-08
  • 录用日期:  2023-04-11
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回