留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analyzing the pyrolysis mechanism of avermectin via experiments and density functional theory

ZHOU Hao LIU Su-xiang ZHAO Bao-feng WANG Jing-wei GUAN Hai-bin ZHU Di LI Huan SONG An-gang

周浩, 刘素香, 赵保峰, 王婧薇, 关海滨, 朱地, 李欢, 宋安刚. 实验和密度泛函理论分析阿维菌素的热解机理[J]. 燃料化学学报(中英文), 2023, 51(8): 1137-1144. doi: 10.1016/S1872-5813(23)60367-6
引用本文: 周浩, 刘素香, 赵保峰, 王婧薇, 关海滨, 朱地, 李欢, 宋安刚. 实验和密度泛函理论分析阿维菌素的热解机理[J]. 燃料化学学报(中英文), 2023, 51(8): 1137-1144. doi: 10.1016/S1872-5813(23)60367-6
ZHOU Hao, LIU Su-xiang, ZHAO Bao-feng, WANG Jing-wei, GUAN Hai-bin, ZHU Di, LI Huan, SONG An-gang. Analyzing the pyrolysis mechanism of avermectin via experiments and density functional theory[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1137-1144. doi: 10.1016/S1872-5813(23)60367-6
Citation: ZHOU Hao, LIU Su-xiang, ZHAO Bao-feng, WANG Jing-wei, GUAN Hai-bin, ZHU Di, LI Huan, SONG An-gang. Analyzing the pyrolysis mechanism of avermectin via experiments and density functional theory[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1137-1144. doi: 10.1016/S1872-5813(23)60367-6

实验和密度泛函理论分析阿维菌素的热解机理

doi: 10.1016/S1872-5813(23)60367-6
详细信息
  • 中图分类号: X786

Analyzing the pyrolysis mechanism of avermectin via experiments and density functional theory

Funds: The project was supported by the National Key R&D Program of China (2018YFE0106400), Natural Science Foundation of Shandong Province of China (ZR2019MEE069), “20 Colleges and Universities” of Jinan Science and Technology Bureau (202228123, 2019GXRC046), Qilu University of Technology (Shandong Academy of Sciences) Science, Education and Industry Integration Innovation Pilot Project (2022GH010)
More Information
  • 摘要: 本研究通过实验和密度泛函理论模拟(DFT)分析了阿维菌素(AVM)的热降解机理。AVMD热解实验结果表明,在250 °C以上,AVM残渣去除率达到99.88%的峰值。AVM热解产物主要为醇类。通过模拟和过渡态计算,确定的四种潜在降解途径中最有可能的是基于破坏C−O键。模拟结果与实验结果基本一致。这些结果为抗生素安全处置技术的发展提供了理论和经验支持。
  • FIG. 2579.  FIG. 2579.

    FIG. 2579.  FIG. 2579.

    Figure  1  Structural formula of avermectin B1a

    Figure  2  Fixed-bed reaction system used for avermectin pyrolysis

    Figure  3  Yield of residue products in avermectin pyrolysis at different temperatures

    Figure  4  Degradation rate of avermectin residue at different temperature

    Figure  5  Degradation rate of avermectin at different temperature

    Figure  6  Yield of avermectin pyrolysis products at different temperatures

    Figure  7  Composition of liquid pyrolysis products at different temperatures

    Figure  8  AVM decomposition pathways

    Table  1  Primary properties of AVMD

    Proximate analysis w/%Ultimate analysis wd/%
    MadVdAdFCdCHNSOa
    2.4936.6550.4310.4431.134.714.290.1720.56
    M: moisture; V: volatile; A: ash; FC: fixed carbon; ad: air dried basis; d: dry basis, a: Determined by difference
    下载: 导出CSV

    Table  2  Decomposition pathways and associated Mulliken layout numbers(e)

    PathwayBondLayout numberBond length
    Energy barrier /
    (kcal·mol−1)
    A and BC4'–O0.531.435.85
    CC13–O0.561.436.70
    DC16–C170.701.418.43
    C8–C91.331.35
    下载: 导出CSV

    Table  3  Duel speed step reaction energy base under four paths

    PathwayTSEnergy barrier /(kcal·mol−1)
    Path-ATS-A442.7
    Path-BTS-B369.32
    Path-CTS-C250.52
    Path-DTS-D564.67
    下载: 导出CSV
  • [1] SHEN Y, ZHUAN R, CHU L, XIANG X, SUN H, WANG J. Inactivation of antibiotic resistance genes in antibiotic fermentation residues by ionizing radiation: Exploring the development of recycling economy in antibiotic pharmaceutical factory[J]. Waste Manage,2019,84:141−146.
    [2] JIANG M, SONG S, LIU H, WANG P, DAI X. Effect of gentamicin mycelial residues disintegration by microwave-alkaline pretreatment on methane production and gentamicin degradation during anaerobic digestion[J]. Chem Eng J,2021,414:128790.
    [3] LIAO H, ZHAO Q, CUI P, CHEN Z, YU Z, GEISEN S, FRIMAN V P, ZHOU S. Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting[J]. Environ Int,2019,133:105203.
    [4] CHEN W, GENG Y, HONG J, KUA H W, XU C, YU N. Life cycle assessment of antibiotic mycelial residues management in China[J]. Renewable Sustainable Energy Rev,2017,79:830−838.
    [5] ZHANG S, CHEN Z, WEN Q, MA J, HE Z. Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra: Characteristics of chemical and fluorescent parameters of water-extractable organic matter[J]. Chemosphere,2016,155:358−366.
    [6] ZHANG Q-Q, YING G-G, PAN C-G, LIU Y-S, ZHAO J-L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environ Sci Technol,2015,49(11):6772−6782. doi: 10.1021/acs.est.5b00729
    [7] BERENDONK T U, MANAIA C M, MERLIN C, FATTA-KASSINOS D, CYTRYN E, WALSH F, BURGMANN H, SORUM H, NORSTROM M, PONS M N, KREUZINGER N, HUOVINEN P, STEFANI S, SCHWARTZ T, KISAND V, BAQUERO F, MARTINEZ J L. Tackling antibiotic resistance: the environmental framework[J]. Nat Rev Microbiol,2015,13(5):310−317. doi: 10.1038/nrmicro3439
    [8] BRIJ MOHAN S. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India[J]. Sci Total Environ,2019,646:1459−1467. doi: 10.1016/j.scitotenv.2018.07.235
    [9] PIñA B, BAYONA J M, CHRISTOU A, FATTA-KASSINOS D, GUILLON E, LAMBROPOULOU D, MICHAEL C, POLESEL F, SAYEN S. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes – NEREUS COST Action ES1403 position paper[J]. J Environ Chem Eng,2020,8(1):102131. doi: 10.1016/j.jece.2018.01.011
    [10] LEMUS J A, BLANCO G, GRANDE J, ARROYO B, GARCIA-MONTIJANO M, MARTINEZ F. Antibiotics threaten wildlife: circulating quinolone residues and disease in Avian scavengers[J]. PLoS One,2008,3(1):e1444. doi: 10.1371/journal.pone.0001444
    [11] JIANG M, SONG S , LIU H, WANG P, DAI X. Effect of gentamicin mycelial residues disintegration by microwave-alkaline pretreatment on methane production and gentamicin degradation during anaerobic digestion[J]. Chem Eng J, 2021, 414: 128790.
    [12] PRICE L B, KOCH B J, HUNGATE B A. Ominous projections for global antibiotic use in food-animal production[J]. Proc Natl Acad Sci U S A,2015,112(18):5554−5555. doi: 10.1073/pnas.1505312112
    [13] FERRI M, RANUCCI E, ROMAGNOLI P, GIACCONE V. Antimicrobial resistance: A global emerging threat to public health systems[J]. Crit Rev Food Sci Nutr,2017,57(13):2857−2876. doi: 10.1080/10408398.2015.1077192
    [14] VASQUEZ M I, LAMBRIANIDES A, SCHNEIDER M, KUMMERER K, FATTA-KASSINOS D. Environmental side effects of pharmaceutical cocktails: What we know and what we should know[J]. J Hazard Mater,2014,279:169−189.
    [15] CHRISTOU A, MICHAEL C, FATTA-KASSINOS D, FOTOPOULOS V. Can the pharmaceutically active compounds released in agroecosystems be considered as emerging plant stressors?[J]. Environ Int,2018,114:360−364.
    [16] KON K, RAI M. Antibiotic resistance: Mechanisms and new antimicrobial approaches[M]. Ukraine: Academic press, 2016.
    [17] HAN H J, ZHENG S Y, MA W C, HUANG J H, CHEN L Y, LIU X, JIA S Y, MU J M. The current situation and treatment and disposal techniques of antibiotic bacterial residues in China[J]. Appl Mech Mater,2014,587−589:820−823.
    [18] CHEN Z, WANG Y, WEN Q, ZHANG S, YANG L. Feasibility study of recycling cephalosporin C fermentation dregs using co-composting process with activated sludge as co-substrate[J]. Environ Technol,2016,37(17):2222−2230. doi: 10.1080/09593330.2016.1146340
    [19] LAN J. Research on the application of Streptomyces avermitilisresidue in bio-compost and preparation of activated carbon[D]. Baotou: Inner Mongolia University of Science and Technology, 2021.
    [20] ZHANG H, GAO Z, AO W, LI J, LIU G, FU J, RAN C, MAO X, KANG Q, LIU Y. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: char characterization and analysis[J]. J Hazard Mater,2017,334:112−120.
    [21] WANG Q, ZHANG Z, XU G, LI G. Pyrolysis of penicillin fermentation residue and sludge to produce biochar: Antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water[J]. J Hazard Mater,2021,413:125385.
    [22] CHEN Y, DU L, LI S, SONG W, JENSEN P A, LIN W. Pyrolysis of antibiotic mycelial dreg and characterization of obtained gas, liquid and biochar[J]. J Hazard Mater,2021,402:123826.
    [23] CHEN T, ZHANG Y, WANG H, LU W, ZHOU Z, ZHANG Y, REN L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresour Technol,2014,164:47−54.
    [24] ZHANG G, LI C, MA D, ZHANG Z, XU G. Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas[J]. Bioresour Technol,2015,192:257−265.
    [25] XIAO R, SUN X, WANG J, FENG J, LI R, ZHANG Z, WANG J J, AMJAD A. Characteristics and phytotoxicity assay of biochars derived from a Zn-rich antibiotic residue[J]. J Anal Appl Pyrolysis,2015,113:575−583.
    [26] FRANKLIN A M, AGA D S, CYTRYN E, DURSO L M, MCLAIN J E, PRUDEN A, ROBERTS M C, ROTHROCK JR M J, SNOW D D, WATSON J E. Antibiotics in agroecosystems: Introduction to the special section[J]. J Environ Qual,2016,45(2):377−393. doi: 10.2134/jeq2016.01.0023
    [27] TORRALBA-SANCHEZ T L, BYLASKA E J, SALTER-BLANC A J, MEISENHEIMER D E, LYON M A, TRATNYEK P G. Reduction of 1, 2, 3-trichloropropane (TCP): Pathways and mechanisms from computational chemistry calculations[J]. Environ Sci: Processes Impacts,2020,22(3):606−616. doi: 10.1039/C9EM00557A
    [28] DOU M, WANG J, GAO B, XU C, YANG F. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: Mechanism, degradation pathway and DFT calculation[J]. Biochem Eng J,2020,383:123134.
    [29] SONG W, ZHOU Y, WANG Z, LI J, ZHANG X, FU C, DU X, WANG Z, QIU W. Accelerate sulfamethoxazole degradation and detoxification by persulfate mediated with Fe2 + &dithionite: Experiments and DFT calculation[J]. J Hazard Mater, 2022, 436.
    [30] PELALAK R, ALIZADEH R, GHARESHABANI E, HEIDARI Z. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study[J]. Sci Total Environ,2020,734:139446.
    [31] MUSHTAQ M, CHUKWUDEBE A C, WRZESINSKI C, ALLEN L R, LUFFER-ATLAS D, ARISON B H. Photodegradation of emamectin benzoate in aqueous solutions[J]. J Agric Food Chem,1998,46(3):1181−1191. doi: 10.1021/jf970561i
    [32] BULL D, WAYNE G, MAC CONNELL J, GRUBER V, KU C. Fate of avermectin B1a in soil and plants[J]. J Agric Food Chem,1984,32(1):94−102. doi: 10.1021/jf00121a025
    [33] CROUCH L S, FEELY W F, ARISON B H, VANDENHEUVEL W J, COLWELL L F, STEARNS R A, KLINE W F, WISLOCKI P G. Photodegradation of avermectin B1a thin films on glass[J]. J Agric Food Chem,1991,39(7):1310−1319. doi: 10.1021/jf00007a024
    [34] MAYNARD M S, KU C C, JACOB T A. Fate of avermectin B1a on citrus fruits. 2. Distribution and magnitude of the avermectin B1a and carbon-14 residue on fruits from a picked fruit study[J]. J Agric Food Chem,1989,37(1):184−189. doi: 10.1021/jf00085a042
    [35] MOYE H A, MALAGODI M H, YOH J, DEYRUP C L, CHANG S M, LEIBEE G L, KU C C, WISLOCKI P G. Avermectin B1a metabolism in celery: a residue study[J]. J Agric Food Chem,1990,38(1):290−297. doi: 10.1021/jf00091a065
    [36] ZAIXING LI C S Æ J Y, JIANBO GUO L X. Biodegradation of avermectin by Bacteroidetes endosymbiont strain LYH[J]. World J Microbiol Biotechno,2008,24:361−366. doi: 10.1007/s11274-007-9482-8
    [37] WANG J, ZHAO B, LIU S, ZHU D, HUANG F, YANG H, GUAN H, SONG A, XU D, SUN L, XIE H, WEI W, ZHANG W, HELMER PEDERSEN T. Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study[J]. Energy Convers Manage,2022,254:115246.
    [38] WRZESINSKI C L, ARISON B H, SMITH J, ZINK D L, VANDENHEUVEL W J, CROUCH L S. Isolation and identification of residues of 4 ‘‘-(epi-methylamino)-4 ‘‘-deoxyavermectin B1a benzoate from the surface of cabbage[J]. J Agric Food Chem,1996,44(1):304−312. doi: 10.1021/jf9500142
    [39] FISHER M. Recent advances in avermectin research[J]. Pure Appl Chem,1990,62(7):1231−1240.
    [40] ADHIKARI S, RUSTUM A M. A comprehensive study to identify and characterize major degradation products of Ivermectin drug substance including its degradation pathways using LC-HRMS and NMR[J]. J Pharm Biomed Anal,2022,214:114730.
    [41] SHEN P, WU S, HU C, CHENG Z, WU J, LUO G, YAO H, MAO X, SONG M, YANG X. Effect of Al modification on the adsorption of As2O3 on the CaSiO3(001) surface: A DFT study[J]. J Mol Graphics Modell,2023,118:108357.
    [42] WANG J, ZHAO B, ZHU D, HUANG F, ZHANG W, YANG H, CHEN L, GUAN H, SUN L, YANG S. Mechanism on catalytic cracking tar with CaO-based catalysts for hydrogen-rich gas by DFT and experiments[J]. Int J Hydrogen Energy,2021,46(9):6522−6531. doi: 10.1016/j.ijhydene.2020.11.171
    [43] WANG M, LIU C, XU X, LI Q. Theoretical investigation on the carbon sources and orientations of the aldehyde group of furfural in the pyrolysis of glucose[J]. J Anal Appl Pyrolysis,2016,120:464−473.
    [44] ZHANG D, YIN L, ZHONG J, CHENG Q, CAI H, CHEN Y, ZHANG Q F. Ring-opening reactions of donor–acceptor cyclopropanes with cyclic ketals and thiol ketals11Electronic supplementary information (ESI) available: Experimental details, characterization data of reactants and products, and copies of NMR spectra.[J]. Org Biomol Chem,2020,18(33):6492−6496. doi: 10.1039/D0OB01530J
  • 2023-BZ-32_支撑材料.pdf
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  112
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 修回日期:  2023-03-21
  • 录用日期:  2023-04-25
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回