留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas

GUO Lei LIU Pei-gong GONG Kun QI Xing-zhen LIN Tie-jun

郭磊, 刘培功, 龚坤, 齐行振, 林铁军. 金属助剂对合成气制高碳醇Co/AC催化剂性能影响[J]. 燃料化学学报(中英文), 2023, 51(11): 1663-1672. doi: 10.1016/S1872-5813(23)60368-8
引用本文: 郭磊, 刘培功, 龚坤, 齐行振, 林铁军. 金属助剂对合成气制高碳醇Co/AC催化剂性能影响[J]. 燃料化学学报(中英文), 2023, 51(11): 1663-1672. doi: 10.1016/S1872-5813(23)60368-8
GUO Lei, LIU Pei-gong, GONG Kun, QI Xing-zhen, LIN Tie-jun. Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1663-1672. doi: 10.1016/S1872-5813(23)60368-8
Citation: GUO Lei, LIU Pei-gong, GONG Kun, QI Xing-zhen, LIN Tie-jun. Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1663-1672. doi: 10.1016/S1872-5813(23)60368-8

金属助剂对合成气制高碳醇Co/AC催化剂性能影响

doi: 10.1016/S1872-5813(23)60368-8
详细信息
  • 中图分类号: TQ546

Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas

Funds: The project was supported by Natural Science Foundation of China (22072177), Natural Science Foundation of Shanghai (21ZR1471700) and Shanghai Youth Science and Technology Talents Sailing Program (21YF1453600)
More Information
  • 摘要: 本实验考察了不同金属助剂(Mn、Zn、La和Zr)对活性炭负载的Co基催化剂(Co/AC)在合成气转化中的活性和产物选择性调控的影响。结果表明,这些金属助剂对CO解离速率,Co2C生成以及醇类产物选择性都有明显的促进作用。所构筑的Co2C/Co0 构成了高碳醇合成所需的双活性位结构。其中,Zn修饰的Co/AC 催化剂表现出最强的CO解离速率、最高的活性和醇类产物的时空收率。Mn助剂最有利于Co2C的生成,但过高的Co2C/Co0比例导致活性略有下降。Zr和La助剂修饰的催化剂具有相似的CO解离速率和催化活性,但CoZr/AC催化剂适宜的Co2C/Co0比及界面环境更有利于实现CO解离和CO非解离功能的协同,从而表现出最高的醇产物选择性。
  • FIG. 2765.  FIG. 2765.

    FIG. 2765.  FIG. 2765.

    Figure  1  Isotherm curves (a) and pore size distributions (b) for the fresh CoX/AC catalysts

    Figure  2  XRD patterns of various catalysts at different stages (a): fresh catalysts; (b): reduced catalysts; (c): spent catalysts at 2θ of 30°−60°

    Figure  3  (HR)TEM images and particle size distributions of Co-containing species for various spent catalysts

    a1−a3 for Co/AC, b1−b3 for CoMn/AC, c1−c3 for CoZn/AC, d1−d3 for CoLa/AC, e1−e3 for CoZr/AC

    Figure  4  C 1s (a) and Co 2p (b) XPS spectra of spent CoX/AC catalysts

    Figure  5  Product distributions of CoX/AC catalysts (a): oxygenates distributions; (b): hydrocarbon distributions Reaction conditions: at 220 °C, 3000 mL/(g∙h), 4 MPa and H2/CO=2

    Figure  6  ASF plots and chain-growth probability for oxygenates (a) and hydrocarbons (b) over various catalyst

    Figure  7  MS signal of CO2 for disproportionation reaction of CO to form CO2 and surface carbonaceous species Experiments were conducted at 220 °C, 0.1 MPa, and 12000 mL/(g·h)

    Table  1  Textural properties of the fresh CoX/AC catalysts

    CatalystSBET /
    (m2·g−1)
    Pore size /
    nm
    Pore volume /
    (cm3·g−1, STP)
    AC1396.02.10.66
    Co/AC319.12.10.11
    CoMn/AC416.22.10.13
    CoZn/AC368.12.10.12
    CoLa/AC409.52.10.12
    CoZr/AC492.62.10.11
    下载: 导出CSV

    Table  2  Average nanoparticle sizes of Co species over spent CoX/AC catalysts characterized by HRTEM and XRD

    Catalystd /nm
    TEMaXRD (Co2C/Co)
    Co/AC11.223.0/12.0
    CoMn/AC11.316.3/−
    CoZn/AC20.621.7/15.5
    CoLa/AC12.319.4/10.6
    CoZr/AC12.116.9/11.3
    a: Co-containing species
    下载: 导出CSV

    Table  3  Relative content of cobalt species in the spent CoX/AC catalysts

    CatalystCo2CCo0Co2C/ Co0
    Co/AC23.476.60.31
    CoMn/AC93.96.115.39
    CoZn/AC50.149.91.00
    CoLa/AC71.728.32.53
    CoZr/AC63.636.41.75
    下载: 导出CSV

    Table  4  Catalytic performance of various catalysts for syngas conversiona

    CatalystCO conversion /%Selectivity /C%STYb /(mg·g−1·h−1)
    ROHcR=dReCH4CO2ROH + R=ROHR=R
    Co/AC18.012.122.164.630.71.234.115.819.882.4
    CoZn/AC29.713.912.572.624.91.026.429.218.7133.4
    CoLa/AC18.414.429.854.423.91.444.217.324.873.8
    CoMn/AC15.417.536.545.013.01.054.018.117.861.6
    CoZr/AC19.019.321.758.025.01.041.024.721.081.3
    a: Reaction conditions: H2/CO=2, 4 MPa, 220 °C, 3000 mL/(g∙h); b: space-time yield; c: oxygenates including alcohols and aldehydes;
    d: olefins; e: paraffins
    下载: 导出CSV

    Table  5  Catalyst surface carbon species concentration

    CatalystIntegrated peak area (*E−5)
    Co/AC1.10
    CoZr/AC1.30
    CoLa/AC1.36
    CoMn/AC1.43
    CoZn/AC4.02
    下载: 导出CSV
  • [1] CHENG K, KANG J C, KING D L, SUBRAMANIAN V, ZHOU C, ZHANG Q H, WANG Y. Advances in catalysis for syngas conversion to hydrocarbons[J]. Adv Catal,2017,60:125−208.
    [2] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev,2007,107(5):1692−1744. doi: 10.1021/cr050972v
    [3] LIN T J, YU F, AN Y L, QIN T T, LI L S, GONG K, ZHONG L S, SUN Y H. Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity[J]. Acc Chem Res,2021,54(8):1961−1971. doi: 10.1021/acs.accounts.0c00883
    [4] LIN T J, AN Y L, YU F, GONG K, YU H L, WANG C Q, SUN Y H, ZHONG L S. Advances in selectivity control for Fischer-Tropsch synthesis to fuels and chemicals with high carbon efficiency[J]. ACS Catal,2022,12(19):12092−12112. doi: 10.1021/acscatal.2c03404
    [5] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [6] ZHONG L S, YU F, AN Y L, ZHAO Y H, SUN Y H, LI Z J, LIN T J, LIN Y J, QI X Z, DAI Y Y, GU L, HU J S, JIN S F, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84−87. doi: 10.1038/nature19786
    [7] LIN T J, QI X Z, WANG X X, XIA L, WANG C Q, YU F, WANG H, LI S G, ZHONG L S, SUN Y H. Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst[J]. Angew Chem Int Ed,2019,58(14):4627−4631. doi: 10.1002/anie.201814611
    [8] XU Y F, LI X Y, GAO J H, WANG J, MA G Y, WEN X D, YANG Y, LI Y W, DING M Y. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science,2021,371(6529):610−613. doi: 10.1126/science.abb3649
    [9] ZHAO B, ZHAI P, WANG P F, LI J Q, LI T, PENG M, ZHAO M, HU G, YANG Y, LI Y W, ZHANG Q W, FAN W B, MA D. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem,2017,3(2):323−333. doi: 10.1016/j.chempr.2017.06.017
    [10] LUK H T, MONDELLI C, FERRÉ D C, STEWART J A, PÉREZ-RAMÍREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev,2017,46(5):1358−1426. doi: 10.1039/C6CS00324A
    [11] AN Y L, LIN T J, YU F, YANG Y Z, ZHONG L S, WU M H, SUN Y H. Advances in direct production of value-added chemicals via syngas conversion[J]. Sci China Chem,2017,60(7):887−903. doi: 10.1007/s11426-016-0464-1
    [12] BEIRAMAR J M, GRIBOVAL-CONSTANT A, KHODAKOV A Y. Effects of metal promotion on the performance of CuZnAl catalysts for alcohol synthesis[J]. ChemCatChem,2014,6(6):1788−1793. doi: 10.1002/cctc.201402037
    [13] PEI Y P, LIU J X, ZHAO Y H, DING Y J, LIU T, DONG W D, ZHU H J, SU H Y, YAN L, LI J L, LI W X. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface[J]. ACS Catal,2015,5(6):3620−3624. doi: 10.1021/acscatal.5b00791
    [14] XIANG Y, KRUSE N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins[J]. Nat Commun,2016,7(1):13058. doi: 10.1038/ncomms13058
    [15] YANG Y Z, LIN T J, QI X Z, YU F, AN Y L, LI Z J, DAI Y Y, ZHONG L S, WANG H, SUN Y H. Direct synthesis of long-chain alcohols from syngas over CoMn catalysts[J]. Appl Catal A: Gen,2018,549:179−187. doi: 10.1016/j.apcata.2017.09.037
    [16] AN Y L, LIN T J, YU F, WANG X X, LU Y W, ZHONG L S, WANG H, SUN Y H. Effect of reaction pressures on structure-performance of Co2C-based catalyst for syngas conversion[J]. Ind Eng Chem Res,2018,57(46):15647−15653. doi: 10.1021/acs.iecr.8b03504
    [17] ZHAO Z A, LU W, YANG R O, ZHU H J, DONG W D, SUN F F, JIANG Z, LYU Y, LIU T, DU H, DING Y J. Insight into the formation of Co@Co2C Catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catal,2018,8(1):228−241. doi: 10.1021/acscatal.7b02403
    [18] ZHAO Z A, LU W, ZHU H J, DONG W D, LYU Y, LIU T, CHEN X K, WANG Y Q, DING Y J. Tuning the Fischer-Tropsch reaction over CoxMnyLa/AC catalysts toward alcohols: Effects of La promotion[J]. J Catal,2018,361:156−167. doi: 10.1016/j.jcat.2018.02.008
    [19] LI Z J, ZHONG L S, YU F, AN Y L, DAI Y Y, YANG Y Z, LIN T J, LI S G, WANG H, GAO P, SUN Y H, HE M Y. Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions[J]. ACS Catal,2017,7(5):3622−3631. doi: 10.1021/acscatal.6b03478
    [20] LI Z J, YAO N, CEN J, LI X N, ZHONG L S, SUN Y H, HE M Y. Effects of alkali metal promoters on the structure-performance relationship of CoMn catalysts for Fischer-Tropsch synthesis[J]. Catal Sci Technol,2020,10(6):1816−1826. doi: 10.1039/C9CY02441G
    [21] LEBARBIER V M, MEI D, KIM D H, ANDERSEN A, MALE J L, HOLLADAY J E, ROUSSEAU R, WANG Y. Effects of La2O3 on the mixed higher alcohols synthesis from syngas over Co catalysts: A combined theoretical and experimental study[J]. J Phys Chem C,2011,115(35):17440−17451. doi: 10.1021/jp204003q
    [22] SINGH J A, HOFFMAN A S, SCHUMANN J, BOUBNOV A, ASUNDI A S, NATHAN S S, NØRSKOV J, BARE S R, BENT S F. Role of Co2C in ZnO-promoted Co catalysts for alcohol synthesis from syngas[J]. ChemCatChem,2019,11(2):799−809. doi: 10.1002/cctc.201801724
    [23] QI X Z, LIN T J, GONG K, WANG X X, LV D, YU F, AN Y L, TANG Z Y, ZHONG L S. Direct synthesis of higher oxygenates via syngas over zinc oxide modified CoMn-based catalysts[J]. Appl Catal A: Gen,2022,648:118925. doi: 10.1016/j.apcata.2022.118925
    [24] DU H, ZHU H J, CHEN X K, DONG W D, LU W, LUO W T, JIANG M, LIU T, DING Y J. Study on CaO-promoted Co/AC catalysts for synthesis of higher alcohols from syngas[J]. Fuel,2016,182:42−49. doi: 10.1016/j.fuel.2016.05.089
    [25] LI L S, LIN T J, LI X, WANG C Q, QIN T T, AN Y L, LU Y W, ZHONG L S, SUN Y H. Control of Co0/Co2C dual active sites for higher alcohols synthesis from syngas[J]. Appl Catal A: Gen,2020,602:117704. doi: 10.1016/j.apcata.2020.117704
    [26] TUCKER C L, RAGOO Y, MATHE S, MACHELI L, BORDOLOI A, ROCHA T C R, GOVENDER S, KOOYMAN P J, VAN STEEN E. Manganese promotion of a cobalt Fischer-Tropsch catalyst to improve operation at high conversion[J]. J Catal,2022,411:97−108. doi: 10.1016/j.jcat.2022.05.006
    [27] JOHNSON G R, WERNER S, BELL A T. An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis: Evidence for enhanced CO adsorption and dissociation[J]. ACS Catal,2015,5(10):5888−5903. doi: 10.1021/acscatal.5b01578
    [28] LI Z J, LIN T J, YU F, AN Y L, DAI Y Y, LI S G, ZHONG L S, WANG H, GAO P, SUN Y H, HE M Y. Mechanism of the Mn promoter via CoMn spinel for morphology control: Formation of Co2C nanoprisms for Fischer-Tropsch to olefins reaction[J]. ACS Catal,2017,7(12):8023−8032. doi: 10.1021/acscatal.7b02144
    [29] PEDERSEN E Ø, SVENUM I-H, BLEKKAN E A. Mn promoted Co catalysts for Fischer-Tropsch production of light olefins - An experimental and theoretical study[J]. J Catal,2018,361:23−32. doi: 10.1016/j.jcat.2018.02.011
    [30] QIN T T, LIN T J, QI X Z, WANG C Q, LI L S, TANG Z Y, ZHONG L S, SUN Y H. Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion[J]. Appl Catal B: Environ,2021,285:119840. doi: 10.1016/j.apcatb.2020.119840
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  56
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 修回日期:  2023-03-19
  • 录用日期:  2023-04-25
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-11-13

目录

    /

    返回文章
    返回