留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含脱水剂的碳酸二甲酯直接合成法催化体系综述

程庆彦 张帅 谷云含 王茁 王锦涛 李莉 王延吉 王寰 乔金栋

程庆彦, 张帅, 谷云含, 王茁, 王锦涛, 李莉, 王延吉, 王寰, 乔金栋. 含脱水剂的碳酸二甲酯直接合成法催化体系综述[J]. 燃料化学学报(中英文), 2023, 51(11): 1593-1616. doi: 10.1016/S1872-5813(23)60376-7
引用本文: 程庆彦, 张帅, 谷云含, 王茁, 王锦涛, 李莉, 王延吉, 王寰, 乔金栋. 含脱水剂的碳酸二甲酯直接合成法催化体系综述[J]. 燃料化学学报(中英文), 2023, 51(11): 1593-1616. doi: 10.1016/S1872-5813(23)60376-7
CHENG Qing-yan, ZHANG Shuai, GU Yun-han, WANG Zhuo, WANG Jin-tao, LI Li, WANG Yan-ji, WANG Huan, QIAO Jin-dong. Catalytic systems for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol containing dehydrating agent, a review[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1593-1616. doi: 10.1016/S1872-5813(23)60376-7
Citation: CHENG Qing-yan, ZHANG Shuai, GU Yun-han, WANG Zhuo, WANG Jin-tao, LI Li, WANG Yan-ji, WANG Huan, QIAO Jin-dong. Catalytic systems for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol containing dehydrating agent, a review[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1593-1616. doi: 10.1016/S1872-5813(23)60376-7

含脱水剂的碳酸二甲酯直接合成法催化体系综述

doi: 10.1016/S1872-5813(23)60376-7
基金项目: 国家自然科学基金(U20A20152)资助
详细信息
    通讯作者:

    Tel: 13821909658,E-mail: chengqingyan@hebut.edu.cn

  • 中图分类号: X701; TQ426; TQ225.52

Catalytic systems for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol containing dehydrating agent, a review

Funds: The project was supported by the National Natural Science Foundation of China (U20A20152).
  • 摘要: 碳酸二甲酯(DMC)是一种用途广泛的环境友好型绿色化学品,利用CO2和CH3OH直接合成DMC是近年来CO2清洁转化的一个研究重点。设计高效稳定的催化剂和反应工艺促进CO2的转化,是DMC直接合成法能否工业化的技术关键。本工作综述了CO2和CH3OH直接合成DMC催化体系的研究进展,介绍了不同类型催化剂的反应机理,主要包括离子液体催化剂、碱金属碳酸盐催化剂、过渡金属氧化物催化剂等,阐述了各种脱水剂的脱水原理和对反应的促进作用,对不同催化-脱水体系的优势及缺点进行分析。据此预测,开发高效稳定的催化剂和对水选择渗透性强的膜材料,构建和实施新型的脱水工艺,将是今后DMC直接合成的研究重点。
  • FIG. 2761.  FIG. 2761.

    FIG. 2761.  FIG. 2761.

    图  1  [CnCmIm][HCO3]上CO2和CH3OH合成DMC的催化和脱水机理[22]

    Figure  1  Catalytic and dehydration mechanism of synthesis of DMC from CO2 and CH3OH on the [CnCmIm][HCO3] catalyst[22] (with permission from John Wiley and Sons)

    图  2  CO2和CH3OH合成DMC的能量分布(单位:kcal/mol),Int1-4和TS1-4为优化后的中间产物模型(键长单位Å)[22]

    Figure  2  Energy distribution for synthesis of DMC from CO2 and CH3OH (unit: kcal/mol), Int1-4 and TS1-4 are optimized intermediate models (bond length unit Å)[22] (with permission from John Wiley and Sons)

    图  3  CH3I参与下CO2和CH3OH合成DMC反应机理[28]

    Figure  3  Reaction mechanism of synthesis of DMC from CO2 and CH3OH with the participation of CH3I[28](with permission from ACS Publication)

    图  4  ZrO2上CO2和CH3OH合成DMC反应机理[32]

    Figure  4  Reaction mechanism of synthesis of DMC from CO2 and CH3OH on ZrO2 [32](with permission from Elsevier)

    图  5  Ce0.6Zr0.4O2和MO/Ce1.6Zr0.4O2上CO2和CH3OH合成DMC催化性能[36]

    Figure  5  Catalytic performance of Ce0.6Zr0.4O2 and MO/Ce1.6Zr0.4O2 for the synthesis of DMC from CO2 and CH3OH[36](with permission from Springer Nature)

    图  6  MO/Ce0.6Zr0.4O2上酸碱位点和催化剂活性之间的协同机制[36]

    Figure  6  Synergy between the acid and basic sites for the catalytic activity of MO/Ce0.6Zr0.4O2 for the synthesis of DMC from CO2 and CH3OH[36] (with permission from Springer Nature)

    图  7  (a) 催化活性与催化剂中等强度酸性位点数量关系,(b) 催化活性与催化剂中等强度碱性位点数量关系[39]

    Figure  7  Relationship between the catalytic activity and the number of acidic sites in the catalyst (a) as well as the relationship between the catalytic activity and the number of basic sites in the catalyst (b) in the synthesis of DMC from CO2 and CH3OH[39] (with permission from Elsevier)

    图  8  整体式催化剂结构及其在固定床反应器中的应用[48]

    Figure  8  Monolithic catalyst structure and its application in the synthesis of DMC from CO2 and CH3OH in a fixed-bed reactor[48](with permission from Royal Society of Chemistry)

    图  9  Cu-Ni/MWCNT上连续合成DMC装置示意图[50]

    Figure  9  Schematic diagram of a device for the continuous synthesis of DMC from CO2 and methanol on the Cu-Ni/MWCNT catalyst[50] (with permission from Elsevier)

    图  10  Cu-Ni/MWCNT催化剂稳定性研究[50]

    Figure  10  Stability test of the Cu-Ni/MWCNT catalysts for the synthesis of DMC from CO2 and CH3OH[50] (with permission from Elsevier)

    图  11  Cu-Ni/GO上CO2和CH3OH合成DMC反应机理[54]

    Figure  11  Reaction mechanism of synthesis of DMC from CO2 and CH3OH on Cu-Ni/GO[54] (with permission from Elsevier)

    图  12  不同配体和钛基沸石咪唑酸盐框架的合成[58]

    Figure  12  Synthesis of different ligands and Ti-based zeolitic imidazolate frameworks[58]

    图  13  MOF-808-4上CO2和CH3OH合成DMC反应机理[61]

    Figure  13  Reaction mechanism of synthesis of DMC from CO2 and CH3OH on MOF-808-4[61] (with permission from Elsevier)

    图  14  Cu-SOPm上CO2和CH3OH合成DMC反应机理[64]

    Figure  14  Reaction mechanism of synthesis of DMC from CO2 and CH3OH on Cu-SOPm[64] (with permission from Royal Soc of Chem)

    图  15  H3PW12O40/ZrO2上CO2和CH3OH合成DMC反应机理,M = W或Zr[68]

    Figure  15  Reaction mechanism of synthesis of DMC from CO2 and CH3OH on the H3PW12O40/ZrO2 catalysts (M = W or Zr)[68] (with permission from Elsevier)

    图  16  H3PW12O40/Ce0.1Ti0.9O2上CO2和CH3OH合成DMC反应机理[70]

    Figure  16  Reaction mechanism of synthesis of DMC from CO2 and CH3OH on H3PW12O40/Ce0.1Ti0.9O2[70] (with permission from Elsevier)

    图  17  DMC连续合成工艺流程示意图[71]

    Figure  17  Schematic diagram of continuous DMC synthesis process[71] (with permission from ACS Publications)

    图  18  CeO2-2–CP催化CO2和CH3OH合成DMC反应体系研究[73]

    Figure  18  Reaction system of synthesis of DMC from CO2 and CH3OH catalyzed by CeO2-2–CP[73](with permission from Elsevier)

    图  19  CeO2-2-CP催化体系中CO2和CH3OH合成DMC反应机理[72]

    Figure  19  Reaction mechanism of synthesis of DMC from CO2 and CH3OH in the CeO2-2–CP catalytic system[72] (with permission from Elsevier)

    图  20  2-CP对CeO2催化剂表面活性位点的影响[77]

    Figure  20  Effect of 2-CP on the surface active sites of the CeO2 catalyst [77] (with permission from ACS Publications)

    图  21  TMM促进CO2和CH3OH合成DMC反应机理[78]

    Figure  21  Reaction mechanism of synthesis of DMC from CO2 and CH3OH promoted by TMM[78](with permission from ACS Publications)

    图  22  DCC促进CO2和CH3OH合成DMC反应机理[79]

    Figure  22  Reaction mechanism of synthesis of DMC from CO2 and CH3OH promoted by DCC[79](with permission from ACS Publications)

    图  23  DCC与NiL2协同催化CO2和CH3OH合成DMC反应机理[80]

    Figure  23  Reaction mechanism of synthesis of DMC from CO2 and CH3OH in the DCC and NiL2 synergistic catalytic system[80] (with permission from Springer Nature)

    图  24  CaC2促进CO2和CH3OH合成DMC反应机理[83]

    Figure  24  Reaction mechanism of synthesis of DMC from CO2 and CH3OH promoted by CaC2[83] (with permission from Royal Soc of Chem)

    图  25  MTCL促进CO2和CH3OH合成DMC反应机理[85]

    Figure  25  Reaction mechanism of synthesis of DMC from CO2 and CH3OH promoted by MTCL[85] (with permission from Elsevier)

    图  26  固定床膜分离反应器构型示意图[89]

    Figure  26  Schematic diagram of fixed bed membrane separation reactor configuration[89] (with permission from Elsevier)

    图  27  CO2和CH3OH合成DMC新型原位脱水反应器结构示意图[91]

    Figure  27  Schematic diagram of a novel in-situ dehydration reactor for CO2 and CH3OH to synthesize DMC[91] (with permission from Elsevier)

    图  28  侧反应器强化全脱水反应精馏工艺流程图[92]

    Figure  28  Process flow diagram of side reactor enhanced total dehydration reaction distillation[92] (with permission from ACS Publication)

    图  29  膜催化剂活性评价装置示意图[94]

    Figure  29  Schematic diagram of the equipment for membrane catalyst activity evaluation[94]

    表  1  DMC合成方法

    Table  1  Summary of DMC synthesis methods

    Synthesis methodAdvantageDisadvantageCurrent status
    Phosgene method1. The method is easy to operate. 2. The method has a high DMC yield and can generate considerable returns1. Phosgene is highly toxic and is classified as a Class A deadly compound. 2. Phosgene and by-product HCl are demanding on the equipmentThe method has been phased out
    Indirect vapor phase methanol oxidative carbonylation1. The reaction conditions are mild.
    2. Product purity is higher than 99% and selectivity is higher than 96%
    1. This method uses an expensive Pd catalyst. 2. NO/O2 mixtures pose an explosion risk.
    3. The intermediate product methyl nitrite is highly toxic
    The method has been phased out
    Direct vapor phase methanol oxidative carbonylation1. Raw materials are low cost and less toxic. 2. By-products (CO2 and H2O) are non-toxic and easy to handle. 3. High product quality1. The methanol conversion rate is low, and the by-product water is easy to inactivate the catalyst. 2. The cost of this method is higher than that of liquid phase methanol oxidative carbonylationThe method has been industrially applied
    Oxidative carbonylation of liquid phase methanol1. High safety, simple process, no environmental pollution. 2. The product has high purity and selectivity of more than 98%1. Cl leakage can easily inactivate the catalyst and corrode the equipment. 2. Water can severely reduce catalyst lifetime. 3. There are serious safety risks in the reaction systemThe method has fewer industrial applications
    Transesterification method1. The reaction conditions are mild, the process is simple, and the catalytic efficiency and product purity are high. 2. Ethylene glycol is a co-produced high value-added chemical product1. This method uses high-cost propylene oxide and ethylene oxide . 2. Ethylene oxide is flammable and explosive, with geographical restrictionsThe method has been industrially applied
    Urea alcohol hydrolysis1. Low cost of raw materials.
    2. No CH3OH-H2O-DMC ternary azeotrope is generated during the reaction
    1. The reaction conditions are harsh, the single-pass conversion rate is low, and the reaction selectivity is poor. 2. It is necessary to solve the problems of environmental pollution, production safety, and catalyst inactivationThe method urgently
    needs to be developed
    CO2-CH3OH direct synthesis method1. Raw materials are cheap, safe and accessible. 2. The reaction has high atomic utilization and few by-products1. The reaction is limited by thermodynamic equilibrium. 2. The yield of this method is extremely lowThe method urgently needs to be developed
    下载: 导出CSV

    表  2  CO2和CH3OH合成DMC反应中化合物的热力学数据和比热容系数(298.15 K, 1.0 × 105 Pa)

    Table  2  Thermodynamic data and specific heat capacity coefficients of various compounds in the synthesis of DMC from CO2 and CH3OH at 298.15 K and 1.0×105 Pa

    CompoundThermodynamic data
    $\Delta { {}_{f}{}^{}{H}_{{\rm{m}}}^{\Theta } }^{}$ /(kJ∙mol−1)$\Delta {S}_{{\rm{m,B}}}^{\Theta }$ /(J∙mol−1∙K−1)ACBC /( × 10−2)DC ( × 10−4)
    CO2−393.51213.7853.00500.6600−0.0405
    CH3OH−238.4127.1919.8589−13.06683.3636
    H2O−285.8369.953.47000.14500.1405
    DMC−608.74235.819.0701−6.32481.5830
    下载: 导出CSV

    表  3  离子液体催化剂上CO2和CH3OH合成DMC催化性能[21]

    Table  3  Catalytic performance of various ionic liquids (ILs) for the synthesis of DMC from CO2 and CH3OH[21]

    Ionic liquidA /mmolx /%s /%
    CH1.630.695.2
    CC
    EmimOH0.310.187.0
    BmimOHtrace
    KOH
    EtmimOH0.620.277.6
    EtmimBr
    CH/CaO1.560.593.0
    CH/CH3I8.192.798.8
    notes: A, amount of DMC produced; x, conversion of CH3OH; s, selectivity of DMC
    下载: 导出CSV

    表  4  [CnCmIm][HCO3]催化剂上CO2和CH3OH合成DMC催化性能[22]

    Table  4  Catalytic performance of [CnCmIm][HCO3] catalysts for the synthesis of DMC from CO2 and CH3OH[22]

    EntryCatalystBasex /%s /%
    1[C1C4Im][HCO3]DBU48>99
    2[C1C4Im][HCO3]BABCO2482
    3[C1C4Im][HCO3]HTMP36>99
    4[C1C4Im][HCO3]Na2CO32297
    5[C1C4Im][HCO3]NaHCO324>99
    6[C1C4Im][HCO3]K2CO36154
    7[C1C4Im][HCO3]KHCO324>99
    8[C1C4Im][HCO3]Cs2CO345>99
    9a[C1C4Im][HCO3]Cs2CO326>99
    10b[C1C4Im][HCO3]Cs2CO337>99
    11c,d[C1C4Im][HCO3]Cs2CO37497
    12d[C1C4Im][HCO3]Cs2CO354>99
    13[C1C4Im][HCO3]Cs2CO38294
    14[C1C4Im][HCO3]None14>99
    15[C1C2Im][HCO3]Cs2CO336>99
    16[C1C6Im][HCO3]Cs2CO347>99
    17[C1C4Im][HCO3]Cs2CO316>99
    Reaction conditions: 5 mmol methanol, 5 mmol [CnCmIm][HCO3], 5 mmol base, 10 mL CH2Br2, 1.0×106 Pa CO2, 25 °C, reaction time of 24 h. DBU, 1,8-diazadicyclo[5.4.0]undecy-7-ene; BABCO, 1,4-diazadicyclo[2.2.2]octane; HTMP, 2,2,6,6-tetramethylpiperidine. (a) 0.25 mmol [CnCmIm][HCO3]; (b) 2.5 mmol [CnCmIm][HCO3]; (c) 20 mmol Cs2CO3; (d) reaction at 50 ℃
    下载: 导出CSV

    表  5  碱金属碳酸盐催化剂上CO2和CH3OH合成DMC催化性能

    Table  5  Catalytic performance of alkali metal carbonate catalysts for the synthesis of DMC from CO2 and CH3OH

    EntryCatalystt /℃p / × 106 Pax /%s /%References
    1K2CO3708.04.181.8[28]
    2KHCO3708.02.074.1[28]
    3Na2CO3708.00.9862.6[28]
    4(NH4)2CO3708.0trace[28]
    5Li2CO3708.00.5457.6[28]
    6K2CO31200.55.842.7[29]
    7K2CO31502.616.238.7[30]
    notes: Entry 1–5: DMC was synthesized with the participation of CH3I and different alkali metal carbonates, reaction conditions: methanol 198 mmol, CH3I 24 mmol, catalyst 3 mmol, and reaction time of 4 h
    下载: 导出CSV

    表  6  过渡金属氧化物催化剂上CO2和CH3OH合成DMC的催化性能

    Table  6  Catalytic performance of transition metal oxide catalysts for the synthesis of DMC from CO2 and CH3OH

    Catalystt /℃p / × 106 Pax /%s /%Ref.
    H3PO4/V2O51401.01.8092.1[31]
    ZrO21705.00.34100[32]
    CeO21301.20.25100[34]
    Ga2O3/Ce0.6Zr0.4O21706.00.50100[36]
    Ce0.5Zr0.5O21407.54.93100[37]
    Ce0.5Zr0.5O212015.00.77100[38]
    Fe0.3Zr0.7Oy1105.00.66100[39]
    CeO212015.00.66100[40]
    CeO21406.50.51100[41]
    Ti0.04Ce0.96O21200.85.3883.1[42]
    Ti0.10Ce0.90O2/Hcc1402.424.379.0[46]
    Ce0.90Mg0.10O2/Hcc1402.425.4279.8[47]
    Zn0.10Ce0.90O2/Hcc1602.420.582.3[48]
    Bi0.12Ce0.88Oδ/Hcc1402.420.883.5[49]
    notes: Hcc means honeycomb cordierite
    下载: 导出CSV

    表  7  MO/ Ce0.6Zr0.4O2催化剂上DMC生成量、比表面积、酸度、碱度[36]

    Table  7  Amount of DMC generated, related to the surface area, acidity and basicity of the MO/Ce0.6Zr0.4O2 catalyst for the synthesis of DMC from CO2 and CH3OH[36]

    CatalystDMC amount
    /(mmol·g−1)
    Surface area
    /(m2·g−1)a
    Acidity
    /(mol·g−1)b
    Basicity
    /(mol·g−1)c
    Ce0.6Zr0.4O20.7553.885.717.0
    Ga2O3/Ce0.6Zr0.4O22.450.0226.3121.8
    La2O3/Ce0.6Zr0.4O22.152.2210.4110.8
    Ni2O3/Ce0.6Zr0.4O21.8542.8188.694.2
    Fe2O3/Ce0.6Zr0.4O21.8348.1180.188.0
    Y2O3/Ce0.6Zr0.4O21.845.8164.584.6
    Co3O4/Ce0.6Zr0.4O21.743.4146.578.3
    Al2O3/Ce0.6Zr0.4O21.541.9132.668.2
    notes: a: the surface area was calculated by the BET (Brunauer-Emmett-Teller) equation, b: acidity was determined by NH3-TPD measurement, c: the basicity the CO2-TPD measurement
    下载: 导出CSV

    表  8  基于Eley-Rideal和Langmuir-Hinshelwood的反应机制[33,37]

    Table  8  Reaction mechanisms for the synthesis of DMC from CO2 and CH3OH, based on the Eley-Rideal and Langmuir-Hinshelwood mechanisms[33,37]

    Elementary
    reaction
    Eley-Rideal mechanismLangmuir-Hinshelwood mechanism
    S1MeOH + * ↔ MeOH*CO2 + * ↔ CO2*
    S2MeOH* + CO2 ↔ MC*MeOH + * ↔ MeOH*
    S3MC* + MeOH* ↔ DMC + H2O + *2MeOH* + CO2* ↔ DMC* + H2O* + *
    S4DMC* ↔ DMC + *
    S5H2O* ↔ H2O + *
    Controlling stepS2S3 or S1
    Apparent rate lawR = k[CO2][MeOH][*]R = k[CO2][MeOH]2[*]
    or R = k[CO2][*]3
    *: Active sites; MC: methyl carbonate
    下载: 导出CSV

    表  9  Cu-Ni合金催化剂上CO2和CH3OH合成DMC催化性能

    Table  9  Catalytic performance of the Cu-Ni alloy for the synthesis of DMC from CO2 and CH3OH

    Catalystt /℃p / × 106 Pax /%s /%Ref.
    Cu-Ni/VSO1400.92.487.2[49]
    Cu-Ni/MWCNT1201.24.4491[50]
    Cu-Ni/HNTs1301.27.8589[53]
    Cu-Ni/GO1051.29.088.0[54]
    Cu-Ni/MS1201.15.086.0[55]
    Cu-Ni/VAC1101.27.7689.9[56]
    Cu-Ni/VSiO1401.24.293.1[57]
    MWCNT: multi-walled carbon nanotubes; HNTs: halloysite nanotubes; GO: graphite oxide; VAC: vanadium doped with activated carbon
    下载: 导出CSV

    表  10  杂多酸催化剂上CO2和CH3OH合成DMC催化性能

    Table  10  Performance of the heteropolyacid catalysts for the synthesis of DMC from CO2 and CH3OH

    Catalystt /℃p / × 106 Pax /%s /%Ref.
    Co1.5PW12O402000.17.686.5[66]
    Fe1.5PMo12O40800.250.1824.18[67]
    Co1.5PMo12O40800.250.5154.12[67]
    Fe1.5PW12O40800.250.5161.87[67]
    Co1.5PW12O40800.251.5369.00[67]
    H3PW12O40/ZrO21001.04.0100[68]
    H3PW12O40/ZrO21705.04.589.9[69]
    H3PW12O40/Ce0.1Ti0.9O21705.05.591.4[70]
    下载: 导出CSV

    表  11  不同催化-脱水体系中CO2和CH3OH合成DMC性能

    Table  11  Performance of various catalytic-dehydration systems for the synthesis of DMC from CO2 and CH3OH

    Catalysts-dehydrants agentt /℃p / × 106 Pax /%s /%Ref.
    CeO2-2–CP120209599[71]
    CeO2-2–CP1205.09799[72]
    CeO2-2–CP1203.088100[77]
    Ce0.5Zr0.5O2-TMM10012.010.4100[78]
    NiL2-DCC801.061100[80]
    Cu-Ni/diatomite-3A MS1201.26.591.2[82]
    Bu2SnO- CaC218015.011.3100[83]
    KCl-DBC1401.540100[84]
    CuCeO2-MTCL1405.01480[85]
    MS: molecular sieves
    下载: 导出CSV
  • [1] ALPER E, ORHAN O Y. CO2 utilization: Developments in conversion processes[J]. Petroleum,2017,3(1):109−126. doi: 10.1016/j.petlm.2016.11.003
    [2] ALI K A, ABDULLAH A Z, MOHAMED A R. Visible light responsive TiO2 nanoparticles modified using Ce and La for photocatalytic reduction of CO2: Effect of Ce dopant content[J]. Appl Catal A: Gen,2017,537:111−120. doi: 10.1016/j.apcata.2017.03.022
    [3] CHEN Y, YANG Y, TIAN S, YE Z, TANG Q, YE L, LI G. Highly effective synthesis of dimethyl carbonate over Cu-Ni alloy nanoparticles@porous organic polymers composite[J]. Appl Catal A: Gen,2019,587:117275. doi: 10.1016/j.apcata.2019.117275
    [4] 左怀纪, 冯园园, 朱国伟. 碳酸二甲酯生产技术进展[J]. 河南化工,2013,5:24−27. doi: 10.14173/j.cnki.hnhg.2013.05.010

    ZUO Huai-ji, FENG Yuan-yuan, ZHU Guo-wei. Technology development of the production of dimethyl carbonate[J]. Henan Chem Ind,2013,5:24−27. doi: 10.14173/j.cnki.hnhg.2013.05.010
    [5] YANG T, ZHOU R, WANG D W, JIANG S P, YAMAUCHI Y, QIAO S Z, MONTEIRO M J, LIU J. Hierarchical mesoporous yolk-shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage[J]. Chem Commun,2015,51(13):2518−2521. doi: 10.1039/C4CC09366F
    [6] 米多, 孔庆国. 2020年碳酸二甲酯技术与市场[J]. 化学工业,2021,39(3):76−80.

    MI Duo, KONG Qing-guo. Technology and market of dimethyl carbonate in 2020[J]. Chem Ind,2021,39(3):76−80.
    [7] 朱建良, 张珂, 李乐易, 赵晶. 甲醇氧化羰基化合成碳酸二甲酯铜系催化剂研究进展[J]. 南京工业大学学报 (自然科学版),2021,43(4):420−424 + 479. doi: 10.3969/j.issn.1671–7627.2021.04.002

    ZHU Jian-liang, ZHANG Ke, LI Yue-yi, ZHAO Jing. Research progress of copper-based catalysts for oxidative carbonylation of methanol to dimethyl carbonate[J]. J Nanjing Tech Univ Nat Sci Ed,2021,43(4):420−424 + 479. doi: 10.3969/j.issn.1671–7627.2021.04.002
    [8] 王红星, 窦雅利, 刘伯潭, 盖晓龙. 精馏与结晶耦合制备电子级碳酸二甲酯的方法: 中国, 501096A[P]. 2017-12-22.

    WANG Hong-xing, DOU Ya-li, LIU Bo-tan, GAI Xiao-long. Method for preparing electronic-grade dimethyl carbonate by coupling distillation and crystallization: CN, 107501096A[P]. 2017-12-22.
    [9] TAN H Z, WANG Z Q, XU Z N, SUN J, XU Y P, CHEN Q S, CHEN Y, GUO G C. Review on the synthesis of dimethyl carbonate[J]. Catal Today,2018,316:2−12. doi: 10.1016/j.cattod.2018.02.021
    [10] TUNDO P, SELVA M. The chemistry of dimethyl carbonate[J]. Acc Chem Res,2002,35(9):706−716. doi: 10.1021/ar010076f
    [11] 史建公, 刘志坚, 刘春生. 二氧化碳为原料合成碳酸二甲酯研究进展[J]. 中外能源,2019,24(10):49−71.

    SHI Jian-gong, LIU Zhi-jian, LIU Chun-sheng. Research progress in synthesis of dimethyl carbonate from carbon dioxide[J]. Sino-Global Energy,2019,24(10):49−71.
    [12] ZHANG M, XU Y, WILLIAMS B L, XIAO M, WANG S, HAN D, SUN L, MENG Y. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2[J]. J Cleaner Prod,2021,279:123344. doi: 10.1016/j.jclepro.2020.123344
    [13] SANTOS B A V, SILVA V, LOUREIRO J M, BARBOSA D, RODRIGUES A E. Modeling of physical and chemical equilibrium for the direct synthesis of dimethyl carbonate at high pressure conditions[J]. Fluid Phase Equilib,2012,336:41−51. doi: 10.1016/j.fluid.2012.08.022
    [14] KUMAR P, WITH P, SRIVASTAVA V C, GLÄSER R, MISHRA I M. Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: characterization, catalytic activity and thermodynamic study[J]. J Alloys Compd,2017,696:718−726. doi: 10.1016/j.jallcom.2016.10.293
    [15] ZHANG Z, WU C, MA J, SONG J, FAN H, LIU J, ZHU Q, HAN B. A strategy to overcome the thermodynamic limitation in CO2 conversion using ionic liquids and urea[J]. Green Chem,2015,17(3):1633−1639. doi: 10.1039/C4GC02199A
    [16] KABRA S K, TURPEINEN E, KEISKI R L, YADAV G D. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide: A thermodynamic and experimental study[J]. J Supercrit Fluids,2016,117:98−107. doi: 10.1016/j.supflu.2016.05.039
    [17] PANDEY S, SRIVASTAVA V C, KUMAR V. Comparative thermodynamic analysis of CO2 based dimethyl carbonate synthesis routes[J]. Can J Chem Eng,2021,99(2):467−478. doi: 10.1002/cjce.23893
    [18] ETA V, MAKI-ARVELA P, LEINO A R, KORDÁS K, SAMLI T, MURZIN D Y, MIKKOLA J P. Synthesis of dimethyl carbonate from methanol and carbon dioxide: Circumventing thermodynamic limitations[J]. Ind Eng Chem Res,2010,49(20):9609−9617. doi: 10.1021/ie1012147
    [19] LI W, GUAN T, CAO Y, ZHANG Y, ZHANG T. Isobaric vapor-liquid equilibrium for toluene-methanol system including three ionic liquids with acetate anion at 101.3 kPa[J]. Fluid Phase Equilib,2020,506:112412. doi: 10.1016/j.fluid.2019.112412
    [20] PENG B, DOU H R, SHI H, EMBER E E, LERCHER J A. Overcoming thermodynamic limitations in dimethyl carbonate synthesis from methanol and CO2[J]. Catal Lett,2018,148:1914−1919. doi: 10.1007/s10562-018-2402-8
    [21] SUN J, LU B, WANG X, LI X, ZHAO J, CAI Q. A functionalized basic ionic liquid for synthesis of dimethyl carbonate from methanol and CO2[J]. Fuel Process Technol,2013,115:233−237. doi: 10.1016/j.fuproc.2013.06.009
    [22] ZHAO T, HU X, WU D, LI R, YANG G, WU Y. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol at room temperature using imidazolium hydrogen carbonate ionic liquid as a recyclable catalyst and dehydrant[J]. ChemSusChem,2017,10(9):2046−2052. doi: 10.1002/cssc.201700128
    [23] BUSS F, MEHLMANN P, MÜCK-LICHTENFELD C, BERGANDER K, DIELMANN F. Reversible carbon dioxide binding by simple Lewis base adducts with electron-rich phosphines[J]. J Am Chem Soc,2016,138(6):1840−1843. doi: 10.1021/jacs.5b13116
    [24] FIORANI G, GUO W, KLEIJ A W. Sustainable conversion of carbon dioxide: the advent of organocatalysis[J]. Green Chem,2015,17(3):1375−1389. doi: 10.1039/C4GC01959H
    [25] VILLIERS C, DOGNON J P, POLLET R, THUÉRY P, EPHRITIKHINE M. An isolated CO2 adduct of a nitrogen base: Crystal and electronic structures[J]. Angew Chem,2010,122(20):3543−3546. doi: 10.1002/ange.201001035
    [26] WÜNSCHE M A, MEHLMANN P, WITTELER T, BUß F, RATHMANN P, DIELMANN F. Imidazolin-2-ylidenaminophosphines as highly electron-rich ligands for transition-metal catalysts[J]. Angew Chem Int Ed,2015,54(40):11857−11860. doi: 10.1002/anie.201504993
    [27] 师艳宁, 高伟, 王淑莉, 金洗郎, 李剑利, 史真. 甲醇和二氧化碳合成碳酸二甲酯催化剂的研究进展[J]. 化学试剂,2012,34(4):319−326. doi: 10.13822/j.cnki.hxsj.2012.04.016

    SHI Yan-ning, GAO Wei, WANG Shu-li, JIN Xi-lang, LI Jian-li, SHI Zhen. Progress of catalysts in synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. Chem Reagents,2012,34(4):319−326. doi: 10.13822/j.cnki.hxsj.2012.04.016
    [28] FUJITA S, BHANAGE B M, IKUSHIMA Y, ARAI M. Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: Effect of reaction conditions and reaction mechanism[J]. Green Chem,2001,3(2):87−91. doi: 10.1039/b100363l
    [29] LIU C, ZHANG S, CAI B, JIN Z. Low pressure one-pot synthesis of dimethyl carbonate catalyzed by an alkali carbonate[J]. Chin J Catal,2015,36(7):1136−1141. doi: 10.1016/S1872-2067(14)60309-0
    [30] YANG Q, WANG H, DING X, YANG X, WANG Y. One-pot synthesis of dimethyl carbonate from carbon dioxide, cyclohexene oxide, and methanol[J]. Res Chem Intermed,2015,41:4101−4111. doi: 10.1007/s11164-013-1514-4
    [31] WU X L, XIAO M, MENG Y Z, LI Y X. Direct synthesis of dimethyl carbonate on HgPO4 modified V2O5[J]. J Mol Catal A: Chem,2005,238(1/2):158−162.
    [32] TOMISHIGE K, IKEDA Y, SAKAIHORI T, FUJIMOTO K. Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. J Catal,2000,192(2):355−362. doi: 10.1006/jcat.2000.2854
    [33] JUNG K T, BELL A T. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia[J]. J Catal,2001,204(2):339−347. doi: 10.1006/jcat.2001.3411
    [34] YOSHIDA Y, ARAI Y, KADO S, KUNIMORI K, TOMISHIGE K. Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts[J]. Catal Today,2006,115(1/4):95−101.
    [35] 卢惠, 张新堂. CeO2催化剂的制备条件对甲醇和二氧化碳合成碳酸二甲酯的影响[J]. 现代化工,2020,40(2):177−180 + 186. doi: 10.16606/j.cnki.issn0253–4320.2020.02.037

    LU-Hui, ZHANG Xin-tang. Effect of preparation conditions of CeO2 catalyst on its catalytic performance in synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. Mod Chem Ind,2020,40(2):177−180 + 186. doi: 10.16606/j.cnki.issn0253–4320.2020.02.037
    [36] LEE H J, JOE W, SONG I K. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over transition metal oxide/Ce0.6Zr0.4O2 catalysts: Effect of acidity and basicity of the catalysts[J]. Korean J Chem Eng,2012,29:317−322. doi: 10.1007/s11814-011-0185-3
    [37] TAMBOLI A H, CHAUGULE A A, GOSAVI S W, GOSAVI S W, KIM H. CexZr1-xO2 solid solutions for catalytic synthesis of dimethyl carbonate from CO2: Reaction mechanism and the effect of catalyst morphology on catalytic activity[J]. Fuel,2018,216:245−254. doi: 10.1016/j.fuel.2017.12.008
    [38] KUMAR P, SRIVASTAVA V C, SHUKLA K, SHUKLA K, GLÄSER R, MISHRA I M. Dimethyl carbonate synthesis from carbon dioxide using ceria-zirconia catalysts prepared using a templating method: characterization, parametric optimization and chemical equilibrium modeling[J]. RSC Adv,2016,6(111):110235−110246. doi: 10.1039/C6RA22643D
    [39] LI A, PU Y, LI F, LUO J, ZHAO N, XIAO F. Synthesis of dimethyl carbonate from methanol and CO2 over Fe-Zr mixed oxides[J]. J CO2 Util,2017,19:33−39. doi: 10.1016/j.jcou.2017.02.016
    [40] KUMAR P, WITH P, SRIVASTAVA V C, GLÄSER R, MISHRA I M. Conversion of carbon dioxide along with methanol to dimethyl carbonate over ceria catalyst[J]. J Environ Chem Eng,2015,3(4):2943−2947. doi: 10.1016/j.jece.2015.10.016
    [41] CUI Z, FAN J, DUAN H, ZHANG J, XUE Y, TAN Y. Effect of calcination atmospheres on the catalytic performance of nano-CeO2 in direct synthesis of DMC from methanol and CO2[J]. Korean J Chem Eng,2017,34:29−36. doi: 10.1007/s11814-016-0212-5
    [42] FU Z, ZHONG Y, YU Y, LONG L, XIAO M, HAN D, WANG S, MENG Y. TiO2-doped CeO2 nanorod catalyst for direct conversion of CO2 and CH3OH to dimethyl carbonate: Catalytic performance and kinetic study[J]. ACS Omega,2018,3(1):198−207. doi: 10.1021/acsomega.7b01475
    [43] SANTOS B A V, PEREIRA C S M, SILVA V, LOUREIRO J M, RODRIGUES A E. Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions[J]. Appl Catal A: Gen,2013,455:219−226. doi: 10.1016/j.apcata.2013.02.003
    [44] MARIN C M, LI L, BHALKIKAR A, DOYLE J E, ZENG X C, CHEUNG C L. Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts[J]. J Catal,2016,340:295−301. doi: 10.1016/j.jcat.2016.06.003
    [45] CHEN Y, WANG H, QIN Z, TIAN S, YE Z, YE L, ABROSHAN H, LI G. TixCe1−xO2 nanocomposites: A monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate[J]. Green Chem,2019,21(17):4642−4649. doi: 10.1039/C9GC00811J
    [46] 严栎颖, 李月, 邓杰, 赵翕, 塔娜, 陈永东. 镁掺杂氧化铈整体式催化剂催化CO2和CH3OH直接合成碳酸二甲酯[J]. 无机化学学报,2022,38(7):1402−1410. doi: 10.11862/CJIC.2022.139

    YAN Li-ying, LI Yue, DENG Jie, ZHAO Xi, TA Na, CHEN Yong-dong. Direct synthesis of dimethyl carbonate from CO2 and methanol by Mg-doped ceria monolithic catalyst[J]. Chin J Inorg Chem,2022,38(7):1402−1410. doi: 10.11862/CJIC.2022.139
    [47] CHEN Y, TANG Q, YE Z, LI Y, YANG Y, PU H, LI G. Monolithic ZnxCe1−xO2 catalysts for catalytic synthesis of dimethyl carbonate from CO2 and methanol[J]. New J Chem,2020,44(29):12522−12530. doi: 10.1039/D0NJ02650F
    [48] CHEN Y, LI Y, CHEN W, XU W W, HAN Z, WAHEED A, YE Z, LI G. Continuous dimethyl carbonate synthesis from CO2 and methanol over BixCe1−xOδ monoliths: Effect of bismuth doping on population of oxygen vacancies, activity, and reaction pathway[J]. Nano Res,2022,15:1366−1374. doi: 10.1007/s12274-021-3669-4
    [49] WU X L, MENG Y Z, XIAO M, LU Y X. Direct synthesis of dimethyl carbonate (DMC) using Cu-Ni/VSO as catalyst[J]. J Mol Catal A: Chem, 2006, 249(1/2): 93–97.
    [50] BIAN J, XIAO M, WANG S J, LU Y X, MENG Y Z. Carbon nanotubes supported Cu-Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. Appl Surf Sci,2009,255(16):7188−7196. doi: 10.1016/j.apsusc.2009.03.057
    [51] RONG T J, XIAO J. The catalytic cracking activity of the kaolin-group minerals[J]. Mater Lett,2002,57(2):297−301. doi: 10.1016/S0167-577X(02)00781-4
    [52] ZANG J, KONDURI S, NAIR S, SHOLL D S. Self-diffusion of water and simple alcohols in single-walled aluminosilicate nanotubes[J]. ACS Nano,2009,3(6):1548−1556. doi: 10.1021/nn9001837
    [53] ZHOU Y, WANG S, XIAO M, HAN D, LU Y, MENG Y. Formation of dimethyl carbonate on nature clay supported bimetallic copper-nickel catalysts[J]. J Cleaner Prod,2015,103:925−933. doi: 10.1016/j.jclepro.2014.08.075
    [54] BIAN J, XIAO M, WANG S, WANG X, LU Y, MENG Y. Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper-nickel/graphite bimetallic nanocomposite catalyst[J]. Chen Eng J, 2009, 147(2/3): 287–296.
    [55] CHEN H, WANG S, XIAO M, HAN D, LU Y, MENG Y. Direct synthesis of dimethyl carbonate from CO2 and CH3OH using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst[J]. Chin J Chem Eng,2012,20(5):906−913. doi: 10.1016/S1004-9541(12)60417-0
    [56] BIAN J, XIAO M, WANG S, LU Y, MENG Y. Direct synthesis of DMC from CH3OH and CO2 over V-doped Cu-Ni/AC catalysts[J]. Catal Commun,2009,10(8):1142−1145. doi: 10.1016/j.catcom.2008.12.008
    [57] ZHANG M, ALFEROV K A, XIAO M, HAN D, WANG S, MENG Y. Continuous dimethyl carbonate synthesis from CO2 and methanol using Cu-Ni@VSiO as catalyst synthesized by a novel sulfuration method[J]. Catalysts,2018,8(4):142. doi: 10.3390/catal8040142
    [58] VERMA S, BAIG R B, NADAGOUDA M N, VARMA R S. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework[J]. Sci Rep,2017,7(1):1−5. doi: 10.1038/s41598-016-0028-x
    [59] POUNGSOMBATE A, IMYEN T, DITTANET P, EMBLEY B, KONGKACHUICHAY P. Direct synthesis of dimethyl carbonate from CO2 and methanol by supported bimetallic Cu-Ni/ZIF-8 MOF catalysts[J]. J Taiwan Inst Chem Eng,2017,80:16−24. doi: 10.1016/j.jtice.2017.07.019
    [60] XUAN K, PU Y, LI F, LI A, LUO J, LI L, WANG F, ZHAO N, XIAO F. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66[J]. J CO2 Util,2018,27:272−282. doi: 10.1016/j.jcou.2018.08.002
    [61] XUAN K, PU Y, LI F, LUO J, ZHAO N, XIAO F. Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Chin J Catal,2019,40(4):553−566. doi: 10.1016/S1872-2067(19)63291-2
    [62] LEE H J, PARK S, JUNG J C, SONG I K. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over H3PW12O40/CexZr1−xO2 catalysts: Effect of acidity of the catalysts[J]. Korean J Chem Eng,2011,28:1518−1522. doi: 10.1007/s11814-011-0020-x
    [63] IKEDA Y, ASADULLAH M, FUJIMOTO K, TOMISHIGE K. Structure of the active sites on H3PO4/ZrO2 catalysts for dimethyl carbonate synthesis from methanol and carbon dioxide[J]. J Phys Chem B,2001,105(43):10653−10658. doi: 10.1021/jp0121522
    [64] KUMAR S, GAWANDE M B, MEDŘÍK I, PETR M, TOMANEC O, KUPKA V, VARMA R S, ZBOŘIL R. Mechanochemical synthesis of Cu2S bonded 2D-sulfonated organic polymers: continuous production of dimethyl carbonate (DMC) via preheating of reactants[J]. Green Chem,2020,22(17):5619−5627. doi: 10.1039/D0GC01030H
    [65] JIANG Z, ZHAO S, YANG Y, TAN M, YANG G, TAN Y. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol over Ce-BTC-derived CeO2[J]. Chem Eng Sci, 2023: 118760.
    [66] AOUISSI A, AL-OTHMAN Z A, AL-AMRO A. Gas-phase synthesis of dimethyl carbonate from methanol and carbon dioxide over Co1.5PW12O40 keggin-type heteropolyanion[J]. Int J Mol Sci,2010,11(4):1343−1351. doi: 10.3390/ijms11041343
    [67] AOUISSI A, AL-DEYAB S S, AL-OWAIS A, AL-AMRO A. Reactivity of heteropolytungstate and heteropolymolybdate metal transition salts in the synthesis of dimethyl carbonate from methanol and CO2[J]. Int J Mol Sci,2010,11(7):2770−2779. doi: 10.3390/ijms11072770
    [68] JIANG C, GUO Y, WANG C, HU C, WU Y, WANG E. Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions[J]. Appl Catal A: Gen, 2003, 256(1/2): 203–212.
    [69] CHIANG C L, LIN K S, YU S H. Preparation and characterization of H3PW12O40/ZrO2 catalyst for carbonation of methanol into dimethyl carbonate[J]. Res Chem Intermed,2018,44:3797−3811. doi: 10.1007/s11164-018-3383-3
    [70] CHIANG C L, LIN K S, YU S H, LIN Y G. Synthesis and characterization of H3PW12O40/Ce0.1Ti0.9O2 for dimethyl carbonate formation via methanol carbonation[J]. Int J Hydrogen Energy,2017,42(34):22108−22122. doi: 10.1016/j.ijhydene.2017.03.120
    [71] BANSODE A, URAKAWA A. Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent[J]. ACS Catal,2014,4(11):3877−3880. doi: 10.1021/cs501221q
    [72] HONDA M, TAMURA M, NAKAGAWA Y, NAKAO K, SUZUKI K, TOMISHIGE K. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies[J]. J Catal,2014,318:95−107. doi: 10.1016/j.jcat.2014.07.022
    [73] TAMURA M, WAKASUGI H, SHIMIZU K, SATSUMA A. Efficient and substrate-specific hydration of nitriles to amides in water by using a CeO2 catalyst[J]. Chem Eur J,2011,17(41):11428−11431. doi: 10.1002/chem.201101576
    [74] HONDA M, TAMURA M, NAKAGAWA Y, SONEHARA S, SUZUKI K, FUJIMOTO K, TOMISHIGE K. Ceria-­­catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine[J]. ChemSusChem,2013,6(8):1341−1344. doi: 10.1002/cssc.201300229
    [75] HONDA M, TAMURA M, NAKAGAWA Y, TOMISHIGE K. Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system[J]. Catal Sci Technol,2014,4(9):2830−2845. doi: 10.1039/C4CY00557K
    [76] MARLIN D S, OLMSTEAD M M, MASCHARAK P K. Extended structures controlled by intramolecular and intermolecular hydrogen bonding: A case study with pyridine-2, 6-dicarboxamide, 1, 3-benzenedicarboxamide and N, N′-dimethyl-2, 6-pyridinedicarboxamide[J]. J Mol Struct, 2000, 554(2/3): 211–223.
    [77] STOIAN D, MEDINA F, URAKAWA A. Improving the stability of CeO2 catalyst by rare earth metal promotion and molecular insights in the dimethyl carbonate synthesis from CO2 and methanol with 2-cyanopyridine[J]. ACS Catal,2018,8(4):3181−3193. doi: 10.1021/acscatal.7b04198
    [78] ZHANG Z F, LIU Z W, LU J, LIU Z T. Synthesis of dimethyl carbonate from carbon dioxide and methanol over CexZr1−xO2 and Br/Ce0.5Zr0.5O2[J]. Ind Eng Chem Res,2011,50(4):1981−1988. doi: 10.1021/ie102017j
    [79] ARESTA M, DIBENEDETTO A, FRACCHIOLLA E, GIANNOCCARO P, PASTORE C, PÁPAI I, SCHUBERT G. Mechanism of formation of organic carbonates from aliphatic alcohols and carbon dioxide under mild conditions promoted by carbodiimides. DFT calculation and experimental study[J]. J Org Chem,2005,70(16):6177−6186. doi: 10.1021/jo050392y
    [80] SHI Y, JIN X, HU Y, WANG S, LI J, SHI Z. Synthesis and characterization of bis[2-(1H-benzimidazol-2-yl) benzoato] nickel(II), and its use for preparation of dimethyl carbonate from methanol and CO2[J]. Res Chem Intermed,2014,40:1179−1186. doi: 10.1007/s11164-013-1030-6
    [81] WANG S, ZHOU J, ZHAO S, ZHAO Y, MA X. Enhancement of dimethyl carbonate synthesis with in situ hydrolysis of 2, 2-dimethoxy propane[J]. Chem Eng Technol,2016,39(4):723−729. doi: 10.1002/ceat.201400603
    [82] HAN D, CHEN Y, WANG S, XIAO M, LU Y, MENG Y. Effect of in-situ dehydration on activity and stability of Cu-Ni-K2O/diatomite as catalyst for direct synthesis of dimethyl carbonate[J]. Catalysts,2018,8(9):343. doi: 10.3390/catal8090343
    [83] ZHANG Z, LIU S, ZHANG L, YIN S, YANG G, HAN B. Driving dimethyl carbonate synthesis from CO2 and methanol and production of acetylene simultaneously using CaC2[J]. Chem Commun,2018,54(35):4410−4412. doi: 10.1039/C8CC01005F
    [84] LI L, SHI S, SONG L, GUO L, WANG Y, MA H, HOU J, WANG H. One-step synthesis of dimethyl carbonate from carbon dioxide, propylene oxide and methanol over alkali halides promoted by crown ethers[J]. J Organomet Chem,2015,794:231−236. doi: 10.1016/j.jorganchem.2015.07.010
    [85] MARCINIAK A A, ALVES O C, APPEL L G, MOTA C J A. Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: Role of copper as dopant and the use of methyl trichloro acetate as dehydrating agent[J]. J Catal,2019,371:88−95. doi: 10.1016/j.jcat.2019.01.035
    [86] INUI K, KURABAYASHI T, SATO S, ICHIKAWA N. Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. J Mol Catal A: Chem,2004,216(1):147−156. doi: 10.1016/j.molcata.2004.02.017
    [87] LIU H, GUO L, ZOU L, CAO M, ZHOU J, OUYANG S. Theoretical and experimental study on solid chemical reaction between BaCO3 and TiO2 in microwave field[J]. Mater Sci Eng B,2004,113(2):161−165. doi: 10.1016/S0921-5107(04)00398-8
    [88] 张福灿, 刘平, 张侃, 吉可明, 张建利, 赵亮, 宋清文. 磺胺嘧啶银/超强碱协同催化 CO2/醇耦合反应选择性制碳酸二甲酯[J]. 燃料化学学报,2023,51(3):304−313. doi: 10.1016/S1872–5813(22)60053–7

    ZHANG Fu-can, LIU Ping, ZHANG Kan, JI Ke-ming, ZHANG Jian-li, SONG Qing-wen. Synergistic silver sulfadiazine/superbase-catalyzed selective synthesis of dimethyl carbonate via the coupling reaction of CO2 and alcohols[J]. J Fuel Chem Technol,2023,51(3):304−313. doi: 10.1016/S1872–5813(22)60053–7
    [89] LI C F, ZHONG S H. Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst[J]. Catal Today, 2003, 82(1/4): 83–90.
    [90] WANG N, LIU Y, HUANG A, CARO J. Hydrophilic SOD and LTA membranes for membrane-supported methanol, dimethyl ether and dimethyl carbonate synthesis[J]. Microporous Mesoporous Mater,2015,207:33−38. doi: 10.1016/j.micromeso.2014.12.028
    [91] HU X, CHENG H, KANG X, CHEN L, YUAN X, QI Z. Analysis of direct synthesis of dimethyl carbonate from methanol and CO2 intensified by in-situ hydration-assisted reactive distillation with side reactor[J]. Chem Eng Process,2018,129:109−117. doi: 10.1016/j.cep.2018.05.007
    [92] WU T W, CHIEN I L. CO2 utilization feasibility study: Dimethyl carbonate direct synthesis process with dehydration reactive distillation[J]. Ind Eng Chem Res,2019,59(3):1234−1248.
    [93] ZHOU J, ZHOU C, XU K, CARO J, HUANG A. Seeding-free synthesis of large tubular zeolite FAU membranes for dewatering of dimethyl carbonate by pervaporation[J]. Microporous Mesoporous Mater,2020,292:109713. doi: 10.1016/j.micromeso.2019.109713
    [94] 周俊杰. 分子筛膜催化反应器在碳酸二甲酯制备方面的应用[D]. 宁波: 中国科学院宁波材料技术与工程研究所, 2021.

    ZHOU Jun-jie. Application of zeolite membrane reactor in the preparation of dimethyl carbonate[D]. Ningbo: Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, 2021.
  • 加载中
图(30) / 表(11)
计量
  • 文章访问数:  1336
  • HTML全文浏览量:  114
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-13
  • 修回日期:  2023-05-29
  • 录用日期:  2023-05-30
  • 网络出版日期:  2023-07-26
  • 刊出日期:  2023-11-13

目录

    /

    返回文章
    返回