留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Fe2O3 on ZrTiO4 support for NH3-SCR catalytic performance

YUAN Long-teng HU Ping HU Bo-liang HAN Jia-yu MA Sheng-jie YANG Fan

袁龙腾, 胡平, 胡卜亮, 韩嘉彧, 马升捷, 杨帆, Alex A. Volinsky. Fe2O3对ZrTiO4载体NH3-SCR催化性能的影响[J]. 燃料化学学报(中英文), 2023, 51(12): 1843-1855. doi: 10.1016/S1872-5813(23)60377-9
引用本文: 袁龙腾, 胡平, 胡卜亮, 韩嘉彧, 马升捷, 杨帆, Alex A. Volinsky. Fe2O3对ZrTiO4载体NH3-SCR催化性能的影响[J]. 燃料化学学报(中英文), 2023, 51(12): 1843-1855. doi: 10.1016/S1872-5813(23)60377-9
YUAN Long-teng, HU Ping, HU Bo-liang, HAN Jia-yu, MA Sheng-jie, YANG Fan, . Effect of Fe2O3 on ZrTiO4 support for NH3-SCR catalytic performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1843-1855. doi: 10.1016/S1872-5813(23)60377-9
Citation: YUAN Long-teng, HU Ping, HU Bo-liang, HAN Jia-yu, MA Sheng-jie, YANG Fan, . Effect of Fe2O3 on ZrTiO4 support for NH3-SCR catalytic performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1843-1855. doi: 10.1016/S1872-5813(23)60377-9

Fe2O3对ZrTiO4载体NH3-SCR催化性能的影响

doi: 10.1016/S1872-5813(23)60377-9
详细信息
  • 中图分类号: O643.36

Effect of Fe2O3 on ZrTiO4 support for NH3-SCR catalytic performance

Funds: The project was supported by the Scientific and Technological Innovation Team Project of the Shaanxi Innovation Capability Support Plan, China (2022TD-30), the Youth Innovation Team of Shaanxi Universities (2019-2022), the Top Young Talents Project of “Special support program for high-level talents” in the Shaanxi Province (2018-2023), and the International Science and Technology Cooperation Program of the Shaanxi Province (2022KW-39), Xi’an Science and Technology Planning Project (2022JH-RYFW-0196)
More Information
  • 摘要: NH3-SCR催化剂主要用于工业生产和汽车尾气清洁,本研究采用“共沉淀-浸渍法”制备了新型α%Fe2O3/ZrTiO4(α=0、8、12、15)催化剂。结果表明,α%Fe2O3/ZrTiO4催化剂的最佳成分配比的12%Fe2O3/ZrTiO4催化剂在250−400 ℃条件下NOx转化率大于80%,在300 ℃时NOx转化率接近100%,并且N2选择性在200−450 ℃大于90%。在ZrTiO4表面负载Fe2O3后,催化剂的氧化还原性能、表面酸度和Oβ/(Oα + Oβ)比例都有所提高,这不仅归因于α%Fe2O3/ZrTiO4催化剂具有多孔结构,还归因于活性组分Fe2O3和载体ZrTiO4之间的电子相互作用。此外,原位DRIFTs反应表明,12%Fe2O3/ZrTiO4催化剂的NH3-SCR反应遵循Eley-Rideal机制。明确的反应机制有利于更深入了解SCR过程中NOx转化的反应过程。这项工作为未来Fe基SCR催化剂在中温范围内替代V基催化剂提供了可行的策略。
  • FIG. 2811.  FIG. 2811.

    FIG. 2811.  FIG. 2811.

    Figure  1  SEM images of ZrTiO4 and α%Fe2O3/ZrTiO4 samples (a): ZrTiO4; (b): 8%Fe2O3/ZrTiO4; (c): 12%Fe2O3/ZrTiO4; (d): 15%Fe2O3/ZrTiO4

    Figure  2  Adsorption isotherms of ZrTiO4 and α%Fe2O3/ZrTiO4 samples (The curves are offset for clarity and are plotted with the same y scale)

    Figure  3  XRD patterns of ZrTiO4 and α%Fe2O3/ZrTiO4 samples

    Figure  4  (a) SEM image and EDX elemental maps of the 12%Fe2O3/ZrTiO4 catalyst: (b) Zr, (c) Fe and (d) Ti

    Figure  5  NH3-TPD profiles of ZrTiO4 and α% Fe2O3/ZrTiO4 samples

    Figure  6  H2-TPR profiles of ZrTiO4 and α% Fe2O3/ZrTiO4 samples

    Figure  7  (a) NOx conversion of ZrTiO4 and α%Fe2O3/ZrTiO4 samples; (b) N2 selectivity; (c) NH3 conversion; (d) N2O emissions (Reactant feed contains 5.0×10−4 of NO, 6.0×10−4 of NH3, 3%O2 balanced with N2)

    Figure  8  XPS profiles of ZrTiO4 and α%Fe2O3/ZrTiO4 samples: (a) Ti 2p; (b) Zr 3d; (c) Fe 2p; (d) O 1s

    Figure  9  DRIFT spectra of (a) NH3 adsorption and (b) NO + O2 adsorption on 12%Fe2O3/ZrTiO4 catalyst at different temperatures

    Figure  10  DRIFT spectra of reaction between (a) pre-adsorption of NH3 and NO + O2 (b) pre-adsorption of NO + O2 and NH3 on 12%Fe2O3/ZrTiO4 catalyst

    Figure  11  Reaction mechanism of 12%Fe2O3/ZrTiO4 catalyst

    Table  1  SBET surface area, pore volume and pore size of ZrTiO4 and α%Fe2O3/ZrTiO4 samples

    SampleSurface area
    / (m2·g−1)
    Pore volume
    /(cm3·g−1)
    Pore size
    /nm
    ZrTiO4161.30.8521.19
    8%Fe2O3/ZrTiO4134.30.5014.87
    12%Fe2O3/ZrTiO4139.60.7722.02
    15%Fe2O3/ZrTiO4129.10.5817.92
    下载: 导出CSV

    Table  2  XPS concentration of ZrTiO4 and α%Fe2O3/ZrTiO4

    SampleAtomic concentrationRelative concentration /%
    FeZrTiOOβ/(Oα + Oβ)Fe3+ /(Fe3+ + Fe2+ )
    ZrTiO414.415.370.323.1
    8%Fe2O3/ZrTiO41.8513.313.271.634.043
    12%Fe2O3/ZrTiO42.2113.312.871.631.773.4
    15%Fe2O3/ZrTiO42.6813.213.171.028.791.7
    下载: 导出CSV
  • [1] ROY B, CHOO W L, BHATTACHARYA S. Prediction of distribution of trace elements under oxy-fuel combustion condition using Victorian brown coals[J]. Fuel,2013,114:135−142. doi: 10.1016/j.fuel.2012.09.080
    [2] GANESH C D, SUBHASHISH D, DEVENDRA M, RAM P. Study of Fe, Co, and Mn-based perovskite-type catalysts for the simultaneous control of soot and NOx from diesel engine exhaust[J]. Mater Dis,2017,10:37−42. doi: 10.1016/j.md.2018.04.002
    [3] SEINFELD J H. Urban air pollution: State of the science[J]. Science,1989,243(4892):745−752. doi: 10.1126/science.243.4892.745
    [4] LIU Z M, HAO J M, FU L X, ZHU T L. Study of Ag/La0.6Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen[J]. Appl Catal B: Environ,2003,44(4):355−370. doi: 10.1016/S0926-3373(03)00103-6
    [5] TOPSOE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated byin situ on-line Fourier transform infrared spectroscopy[J]. Science,1994,265(5176):1217−1219. doi: 10.1126/science.265.5176.1217
    [6] CHEN L, LI J H, GE M F. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3[J]. J Phys Chem C,2009,113(50):21177−21184. doi: 10.1021/jp907109e
    [7] LONG R Q, YANG R T. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. J Am Chem Soc,1999,121(23):5595−5596. doi: 10.1021/ja9842262
    [8] LIAN Z H, LIU F D, HE H. Enhanced activity of Ti-modified V2O5/CeO2 catalyst for the selective catalytic reduction of NOx with NH3[J]. Ind Eng Chem Res,2014,53(50):19506−19511.
    [9] HUANG T J, ZHANG Y P, ZHUANG K, LU BIN, ZHU YIWEN, SHEN KAI. Preparation of honeycombed holmium-modified Fe-Mn/TiO2 catalyst and its performance in the low temperature selective catalytic reduction of NOx[J]. J Fuel Chem Technol,2018,46(3):319−327. doi: 10.1016/S1872-5813(18)30015-X
    [10] BIE X, WU K, JIAO K L, ZHAO K, CHEN X Y, MA S C. Behavior and structure tuning of (Mn&Fe)AlOx-based catalysts for superior denitrification performance[J]. J Environ Chem Eng,2021,9(5):106153. doi: 10.1016/j.jece.2021.106153
    [11] FOO R, VAZHNOVA T, LUKYANOV D B, MILLINGTON P, COLLIER J, RAJARAM R, GOLUNSKI S. Formation of reactive Lewis acid sites on Fe/WO3-ZrO2 catalysts for higher temperature SCR applications[J]. Appl Catal B: Environ,2015,162:174−179. doi: 10.1016/j.apcatb.2014.06.034
    [12] FAN B Y, ZHANG Z Y, LIU C X, LIU Q L. Investigation of sulfated iron-based catalysts with different sulfate position for selective catalytic reduction of NOx with NH3[J]. Catalysts,2020,10(9):1035. doi: 10.3390/catal10091035
    [13] HUANG H F, CHEN Y J, YANG R, ZHU Q L, LU H F. Fe-V/TiO2 catalysts for selective catalytic reduction of NOx with NH3 in diesel exhaust[J]. J Fuel Chem Technol,2014,42(6):751−757.
    [14] ZHOU Y Y, XIE Z Y, JIANG J X, WANG J, SONG X Y, HE Q, DING W, WEI Z D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction[J]. Nat Catal,2021,4(4):341−341. doi: 10.1038/s41929-021-00601-5
    [15] WEI X L, ZHAO R Q, CHU B X, XIE S Z, QIN Q J, CHEN K, LI L L, ZHAO S L, BIN LI, DONG L H. Significantly enhanced activity and SO2 resistance of Zr-modified CeTiOx catalyst for low-temperature NH3-SCR by H2 reduction treatment[J]. Mol Catal,2022,518:112069. doi: 10.1016/j.mcat.2021.112069
    [16] LIU C X, BI Y L, LI J H. Activity enhancement of sulphated Fe2O3 supported on TiO2-ZrO2 for the selective catalytic reduction of NO by NH3[J]. Appl Surf Sci,2020,528:146695. doi: 10.1016/j.apsusc.2020.146695
    [17] GUO K, JI J W, OSUGA R, ZHU Y X, SUN J F, TANG C J, KONDO J N, DONG L. Construction of Fe2O3 loaded and mesopore confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance[J]. Appl Catal B: Environ,2021,287:119982. doi: 10.1016/j.apcatb.2021.119982
    [18] GONG Z Q, NIU S L, ZHANG Y J, LU C M. Facile synthesis of porous α-Fe2O3 nanostructures from MIL-100(Fe) via sacrificial templating method, as efficient catalysts for NH3-SCR reaction[J]. Mater Res Bull,2020,123:110693. doi: 10.1016/j.materresbull.2019.110693
    [19] FANG N J, GUO J X, SHU S, LUO H D, CHU Y H, LI J J. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR[J]. Chem Eng J,2017,325:114−123. doi: 10.1016/j.cej.2017.05.053
    [20] LIU F D, SHAN W P, LIAN Z H, LIU J J, HE H. The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ,2018,230:165−176. doi: 10.1016/j.apcatb.2018.02.052
    [21] ZHAO K, MENG J P, LU J Y, HE Y, HUANG H Z, TANG Z C, ZHEN X P. Sol-gel one-pot synthesis of efficient and environmentally friendly iron-based catalysts for NH3-SCR[J]. Appl Surf Sci,2018,445:454−461. doi: 10.1016/j.apsusc.2018.03.160
    [22] HOU Y Q, WANG J C, LI Q Y, LIU Y J, BAI Y R, ZENG Z Q, HUANG Z G. Environmental-friendly production of FeNbTi catalyst with significant enhancement in SCR activity and SO2 resistance for NOx removal[J]. Fuel,2021,285:119133. doi: 10.1016/j.fuel.2020.119133
    [23] REN D D, GUI K T, GU S C, WEI Y L. Mechanism of improving the SCR NO removal activity of Fe2O3 catalyst by doping Mn[J]. J Alloys Comp,2021,867:158787. doi: 10.1016/j.jallcom.2021.158787
    [24] SHEN B X, WANG Y Y, WANG F M, LIU T. The effect of Ce-Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chem Eng J,2014,236:171−180. doi: 10.1016/j.cej.2013.09.085
    [25] SWIRK K, WANG Y, HU C W, LI L, DA C P, DELAHAY G. Novel preparation of Cu and Fe zirconia supported catalysts for selective catalytic reduction of NO with NH3[J]. Catalysts,2021,11(1):55. doi: 10.3390/catal11010055
    [26] LI C X, XIONG Z B, HE J F, QU X K, LI Z Z, NING X, LU W, WU S M, TAN L Z. Influence of ignition atmosphere on the structural properties of magnetic iron oxides synthesized via solution combustion and the NH3-SCR activity of W/Fe2O3 catalyst[J]. Appl Catal A: Gen,2020,602:117726. doi: 10.1016/j.apcata.2020.117726
    [27] LI Y F, HOU Y Q, ZHANG Y Z, YANG Y T, HUANG Z G. Confinement of MnOx@Fe2O3 core-shell catalyst with titania nanotubes: Enhanced N2 selectivity and SO2 tolerance in NH3-SCR process[J]. J Colloid Interface Sci,2021,608:2224−2234.
    [28] ZHOU X, YU F, SUN R B, TIAN J Q, WANG Q, DAI B, DAN J M, PFEIFFER H. Two-dimensional MnFeCo layered double oxide as catalyst for enhanced selective catalytic reduction of NOx with NH3 at low temperature (25-150 degrees C)[J]. Appl Catal A: Gen,2020,592:117432. doi: 10.1016/j.apcata.2020.117432
    [29] SONG L, MA K, TIAN W, JI J Y, LIU C J, TANG S Y, JIANG W, YUE H R, LIANG B. An environmentally friendly FeTiSOx catalyst with a broad operation-temperature window for the NH3-SCR of NOx[J]. AICHE J,2019,65(10):e16684.
    [30] XU L T, NIU S L, LU C M, ZHANG Q, LI J. Influence of calcination temperature on Fe0.8Mg0.2Oz catalyst for selective catalytic reduction of NOx with NH3[J]. Fuel,2018,219:248−258. doi: 10.1016/j.fuel.2018.01.083
    [31] WANG X B, ZHANG L, WU S G, ZOU W X, YU S H, SHAO Y, DONG L. Promotional effect of Ce on iron-based catalysts for selective catalytic reduction of NO with NH3[J]. Catalysts,2016,6(8):112. doi: 10.3390/catal6080112
    [32] XIONG Z B, WU C, HU Q, WANG Y Z, JIN J, LU C M, GUO D X. Promotional effect of microwave hydrothermal treatment on the low-temperature NH3-SCR activity over iron-based catalyst[J]. Chem Eng J,2016,286:459−466. doi: 10.1016/j.cej.2015.10.082
    [33] ZHOU Y H, REN S, WANG M M, YANG J, CHEN Z C, CHEN L. Mn and Fe oxides co-effect on nanopolyhedron CeO2 catalyst for NH3-SCR of NO[J]. J Energy Inst,2021,99:97−104. doi: 10.1016/j.joei.2021.08.003
    [34] WU Z B, JIANG B Q, LIU Y, WANG H Q, JIN R B. DRIFT study of manganese/ titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environ Sci Technol,2007,41(16):5812−7.
    [35] GUAN B, LIN H, ZHU L, HUANG Z. Selective catalytic reduction of NOx with NH3 over Mn, Ce substitution Ti0.9V0.1O2-delta nanocomposites catalysts prepared by self-propagating high-temperature synthesis method[J]. J Phys Chem C,2011,115(26):12850−12863. doi: 10.1021/jp112283g
    [36] JIANG B Q, LI Z G, LEE S C. Mechanism study of the promotional effect of O2 on low-temperature SCR reaction on Fe-Mn/TiO2 by DRIFT[J]. Chem Eng J,2013,225:52−58. doi: 10.1016/j.cej.2013.03.022
    [37] LI X Y, CHEN J, LU C M, LUO G Q, YAO H. Performance of Mo modified γ-Fe2O3 catalyst for selective catalytic reduction of NOx with ammonia: Presence of arsenic in flue gas[J]. Fuel,2021,294:120552. doi: 10.1016/j.fuel.2021.120552
    [38] CHEN L, LI J H, GE M F. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol,2010,44(24):9590−9596.
    [39] HADJIIVANOV K I. Identification of neutral and charged NxOy surface species by ir spectroscopy[J]. Catal Rev,2000,42(1-2):71−144. doi: 10.1081/CR-100100260
    [40] LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ,2009,93(1):194−204.
    [41] XU H D, WANG Y, CAO Y, FANG Z T, LIN T, GONG M C, CHEN Y Q. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3[J]. Chem Eng J,2014,240:62−73. doi: 10.1016/j.cej.2013.11.053
    [42] ARTURO M-A, JAVIER S, JOSÉ C C, XOSÉ S, ADOLFO A, RENATO C. NO reaction at surface oxygen vacancies generated in cerium oxide[J]. J Chem Soc, Faraday Trans,1995,91:1679−1687. doi: 10.1039/FT9959101679
    [43] FAN Z Y, SHI J W, GAO C, GAO G, WANG B R, NIU C M. Rationally designed porous MnOx-FeOx nanoneedles for low-temperature selective catalytic reduction of NOx by NH3[J]. ACS Appl Mater Interfaces,2017,9(19):16117−16127.
    [44] MA S B, ZHAO X Y, LI Y S, ZHANG T R, YUAN F L, NIU X Y, ZHU Y J. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a = 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO[J]. Appl Catal B: Environ,2019,248:226−238. doi: 10.1016/j.apcatb.2019.02.015
    [45] SHU Y, SUN H, QUAN X, CHEN S. Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia[J]. J Phys Chem C,2012,116(48):25319−25327. doi: 10.1021/jp307038q
    [46] WANG H M, NING P, ZHANG Y Q, MA Y P, WANG J F, WANG L Y, ZHANG Q L. Highly efficient WO3-FeOx catalysts synthesized using a novel solvent-free method for NH3-SCR[J]. J Hazardous Mater,2020,388:121812. doi: 10.1016/j.jhazmat.2019.121812
    [47] GAO C, SHI J W, FAN Z Y, WANG B R, WANG Y, He C, WANG X B, LI J, NIU C M. "Fast SCR" reaction over Sm-modified MnOx-TiO2 for promoting reduction of NOx with NH3[J]. Appl Catal A: Gen,2018,564:102−112. doi: 10.1016/j.apcata.2018.07.017
    [48] GUI K T, LIANG H, ZHA X B. DRIFTS study of gamma Fe2O3 nano-catalyst for low-temperature selective catalytic reduction of NOx with NH3[J]. Can J Chem Eng,2016,94(9):1668−1675. doi: 10.1002/cjce.22546
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  109
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-04-08
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回