留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe/g-C3N4表面改性及其对CO加氢产物分布的影响

孙禹 高新华 马清祥 范素兵 赵天生 张建利

孙禹, 高新华, 马清祥, 范素兵, 赵天生, 张建利. Fe/g-C3N4表面改性及其对CO加氢产物分布的影响[J]. 燃料化学学报(中英文), 2024, 52(1): 19-28. doi: 10.1016/S1872-5813(23)60378-0
引用本文: 孙禹, 高新华, 马清祥, 范素兵, 赵天生, 张建利. Fe/g-C3N4表面改性及其对CO加氢产物分布的影响[J]. 燃料化学学报(中英文), 2024, 52(1): 19-28. doi: 10.1016/S1872-5813(23)60378-0
SUN Yu, GAO Xinhua, MA Qingxiang, FAN Subing, ZHAO Tiansheng, ZHANG Jianli. Effect of surface modification of Fe/g-C3N4 catalyst on the product distribution in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 19-28. doi: 10.1016/S1872-5813(23)60378-0
Citation: SUN Yu, GAO Xinhua, MA Qingxiang, FAN Subing, ZHAO Tiansheng, ZHANG Jianli. Effect of surface modification of Fe/g-C3N4 catalyst on the product distribution in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 19-28. doi: 10.1016/S1872-5813(23)60378-0

Fe/g-C3N4表面改性及其对CO加氢产物分布的影响

doi: 10.1016/S1872-5813(23)60378-0
基金项目: 国家自然科学基金(21968025)和宁夏自然科学基金重点项目(2022AAC02002)资助
详细信息
    通讯作者:

    Tel: 0951-2062323, Fax: 0951-2062323, E-mail: gxh@nxu.edu.cn

    zhangjl@nxu.edu.cn

  • 中图分类号: O643

Effect of surface modification of Fe/g-C3N4 catalyst on the product distribution in CO hydrogenation

Funds: The project was supported by the National Natural Science Foundation of China (21968025) and the Key Project of Ningxia Natural Science Foundation (2022AAC02002).
  • 摘要: 采用尿素热缩合法制备了氮化碳(g-C3N4),经H2O2、NH3·H2O处理、浸渍法负载Fe制得改性Fe/g-C3N4,对比研究了改性前后催化剂的CO加氢性能。结合XRD、SEM、FT-IR、CO2-TPD、CO-TPD、H2-TPR、接触角测试和N2物理吸附-脱附等系列表征,探究了表面预处理对Fe/g-C3N4催化剂织构性质以及CO加氢产物分布的影响。结果表明,不同改性方法对催化剂的织构性质和CO加氢性能影响显著。尿素热缩合法制备的g-C3N4具有典型蜂窝状结构,Fe与g-C3N4相互作用较强,且高度分散;改性前后样品均呈亲水性,且H2O2、NH3·H2O处理后亲水性增强,H2O2处理增强了表面羟基,NH3·H2O处理增加了表面氨基,促进了CO吸附,促使Fe(NCN)物相生成;预处理后的催化剂表面碱性增强。在CO加氢反应中,两步改性后的Fe/AM-g-C3N4催化剂,CO2选择性降至11.61%;Fe/AM-g-C3N4表面碱性增强,抑制了烯烃二次加氢,烯烃选择性较高,${\rm{C}}_2^=-{\rm{C}}_4^= $达32.37%,O/P值3.23。
  • FIG. 2876.  FIG. 2876.

    FIG. 2876.  FIG. 2876.

    图  1  不同预处理g-C3N4(a)和反应前(b)反应后(c)催化剂的XRD谱图

    Figure  1  XRD patterns of (a) g-C3N4 (b) fresh and (c) spent catalysts

    图  2  催化剂的SEM照片

    Figure  2  SEM images of fresh (a) g-C3N4, (b) OH-g-C3N4, (c) NH-g-C3N4, (d) AM-g-C3N4, (e) Fe/g-C3N4, (f) Fe/OH-g-C3N4, (g) Fe/NH-g-C3N4 and (h) Fe/AM-g-C3N4 samples

    图  3  催化剂的TEM照片和Fe/AM-g-C3N4 EDX分析

    Figure  3  TEM images of fresh (a) g-C3N4, (b) OH-g-C3N4, (c) NH-g-C3N4, (d) AM-g-C3N4, (e) Fe/g-C3N4, (f) Fe/OH-g-C3N4, (g) Fe/NH-g-C3N4 and (h) Fe/AM-g-C3N4 and EDX analysis of Fe/AM-g-C3N4 sample

    图  4  样品的N2吸附-脱附曲线(a)与孔径分布(b)

    Figure  4  N2 adsorption and desorption isotherms (a) and pore diameter distribution (b) of samples

    图  5  不同预处理g-C3N4(a)和负载Fe后(b)样品的FT-IR谱图

    Figure  5  FT-IR spectra of pretreated g-C3N4 (a) and Fe/x-g-C3N4 (b) samples

    图  6  催化剂的TG曲线

    Figure  6  TG curves of the catalyst samples

    图  7  催化剂的CO-TPD谱图

    Figure  7  CO-TPD profiles of catalyst samples

    图  8  催化剂的CO2-TPD谱图

    Figure  8  CO2-TPD profiles of the catalysts

    图  9  催化剂的H2-TPR谱图

    Figure  9  H2-TPR profiles of the catalyst samples

    图  10  (a) g-C3N4、(b) OH-g-C3N4、(c) NH-g-C3N4、(d)AM-g-C3N4的接触角

    Figure  10  Contact angles of (a) g-C3N4, (b) OH-g-C3N4, (c) NH-g-C3N4, (d) AM-g-C3N4 samples

    图  11  催化剂的Zeta电位

    Figure  11  Zeta potential of catalyst samples

    图  12  (a)表面处理对CO加氢产物分布的影响,(b)CO转化率随时间的变化

    反应条件:H2/CO=2, 1000 h−1, 280 ℃, 2 MPa, TOS=48 h

    Figure  12  Product distribution (a) and CO conversion with time on stream (b) for the catalysts

    Reaction conditions: H2/CO=2, 1000 h−1, 280 ℃, 2 MPa, TOS=48 h.

    表  1  催化剂的织构性质

    Table  1  Textural property of samples

    SampleBET surface
    area A/ (m2·g−1)
    Pore volumea
    v/ (cm3·g−1)
    Average pore
    sizeb
    d/nm
    g-C3N426.820.09023.00
    OH-g-C3N419.060.06427.79
    NH-g-C3N413.460.08338.90
    AM-g-C3N48.270.04542.28
    Fe/g-C3N446.490.23349.08
    Fe/OH-g-C3N449.920.25835.51
    Fe/NH-g-C3N416.880.08835.21
    Fe/AM-g-C3N423.880.13334.44
    a: BJH adsorption pore volume; b: BJH adsorption average pore size.
    下载: 导出CSV
  • [1] FUJIMORI S, INOUE S, Carbon monoxide in main-group chemistry[J]. J Am Chem Soc, 2022, 5(144): 2034–2050.
    [2] 刘赛赛, 姚金刚, 陈冠益, 等. 合成气一步法制备低碳烯烃和液体燃料催化剂研究进展[J]. 燃料化学学报 (中英文),2023,51(1):34−51.

    LIU Sai-sai, YAO Jin-gang, CHEN Guan-yi, et al. One-step catalyst for the preparation of light olefins and liquid fuels from syngas[J]. J Fuel Chem Technol,2023,51(1):34−51.
    [3] CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4278. doi: 10.1002/anie.201601208
    [4] JIAO F, LI J J, PAN X L, et al, Selective conversion of syngas to light olefins[J]. Science, 2016, 6277(351): 1065–1068.
    [5] JIAO F, PAN X L, GONG K, et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angew Chem Int Ed,2018,57(17):4692−4696. doi: 10.1002/anie.201801397
    [6] ZHANG P P, TAN L, YANG G H, et al. One-pass selective conversion of syngas to paraxylene[J]. Chem Sci,2017,8(12):7941−7946. doi: 10.1039/C7SC03427J
    [7] ZHAO B, ZHAI P, WANG P F, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem,2017,3(2):323−333. doi: 10.1016/j.chempr.2017.06.017
    [8] YU X F, ZHANG J L, WANG X, et al. Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J]. Appl Catal B: Environ,2018,232:420−428. doi: 10.1016/j.apcatb.2018.03.048
    [9] XU Y F, LI X Y, GAO J H, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science,2021,371(6529):610−613. doi: 10.1126/science.abb3649
    [10] 马龙, 张玉玺, 高新华, 等. Fe3O4@PI催化剂的制备及其费托合成性能[J]. 燃料化学学报,2020,48(7):813−820. doi: 10.1016/S1872-5813(20)30057-8

    MA Long, ZHANG Yu-xi, GAO Xin-hua, et al. Preparation of Fe3O4@PI and its catalytic performance in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2020,48(7):813−820. doi: 10.1016/S1872-5813(20)30057-8
    [11] FANG W, WANG C T, LIU Z Q, et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration[J]. Science,2022,377(6604):406−410. doi: 10.1126/science.abo0356
    [12] OKOYE-CHINE C G, MOYO M, HILDEBRANDT D. The influence of hydrophobicity on Fischer-Tropsch synthesis catalysts[J]. Rev Chem Eng,2022,38(5):477−502. doi: 10.1515/revce-2020-0037
    [13] CHEN Z, ZHANG J, ZHENG S K, et al. The texture evolution of g-C3N4 nanosheets supported Fe catalyst during Fischer-Tropsch synthesis[J]. Mol Catal,2018,444:90−99. doi: 10.1016/j.molcata.2016.12.011
    [14] PARK H, YOUN D H, KIM J Y, et al. Selective formation of hägg iron carbide with g-C3N4 as a sacrificial support for highly active Fischer-Tropsch synthesis[J]. ChemCatChem,2015,7(21):3488−3494. doi: 10.1002/cctc.201500794
    [15] KOO H M, WANG X, KIM A R, et al. Effects of self-reduction of Co nanoparticles on mesoporous graphitic carbon-nitride to CO hydrogenation activity to hydrocarbons[J]. Fuel,2021,287:119437.
    [16] ZHANG Y X, GUO X Y, LIU B, et al. Surface modification of g-C3N4-supported iron catalysts for CO hydrogenation: Strategy for product distribution[J]. Fuel,2021,305:121473. doi: 10.1016/j.fuel.2021.121473
    [17] WANG Z Y, GUAN W, SUN Y J, et al. Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity[J]. Nanoscale,2015,7(6):2471−2479. doi: 10.1039/C4NR05732E
    [18] JÜRGENS B, IRRAN E, SENKER J, et al. Melem (2, 5, 8-Triamino-tri-striazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, Solid-State NMR, and theoretical studies[J]. J Am Chem Soc,2003,125(34):10288−10300. doi: 10.1021/ja0357689
    [19] GUO F, WANG L J, SUN H R, et al. A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen[J]. Int J Hydrogen Energ,2020,45(55):30521−30532. doi: 10.1016/j.ijhydene.2020.08.080
    [20] KANG S F, HE M F, CHEN M Y, et al. Surface amino group regulation and structural engineering of graphitic carbon nitride with enhanced photocatalytic activity by ultrafast ammonia plasma immersion modification[J]. ACS Appl Mater Interfaces,2019,11(16):14952−14959. doi: 10.1021/acsami.9b01068
    [21] WANG X H, NAN Z D. Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism[J]. Sep Purif Technol, 2020, 233: 116023–116032
    [22] AN S F, ZHANG G H, WANG T W, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano,2018,12(9):9441−9450. doi: 10.1021/acsnano.8b04693
    [23] DING Z X, CHEN X F, ANTONIETTI M, et al. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation[J]. ChemSusChem,2010,4(2):274−281.
    [24] ZHANG Y X, GUOX Y, LIU B, et al. Cellulose modified iron catalysts for enhanced light olefins and linear $ {\rm{C}}_5^+ $ α-olefins from CO hydrogenation[J]. Fuel,2021,294(9):120504.
    [25] MA J, SUN N, WANG C, et al. Facile synthesis of novel Fe3O4@SiO2@mSiO2@TiO2 core-shell microspheres with mesoporous structure and their photocatalytic performance[J]. J Alloy Compd,2018,743:456−463. doi: 10.1016/j.jallcom.2018.02.005
    [26] TORSHIZI H O, POUR A N, MOHAMMADI A, et al. Fischer-Tropsch synthesis using a cobalt catalyst supported on graphitic carbon nitride[J]. New J Chem,2020,44(15):6053−6062. doi: 10.1039/D0NJ01041C
    [27] XU H, YAN J, XU Y G, et al. Novel visible-light-driven AgX/graphite-like g-C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity[J]. Appl Catal B: Environ,2013,129:182−193. doi: 10.1016/j.apcatb.2012.08.015
    [28] XIANG Q J, YU J G, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. J Phys Chem C,2011,115(15):7355−7363. doi: 10.1021/jp200953k
    [29] LI Y P, ZHAN J, HUANG L Y, et al. Synthesis and photocatalytic activity of a bentonite/g-C3N4 composite[J]. RSC Adv,2014,4(23):11831−11839. doi: 10.1039/c3ra46818f
    [30] ZHANG S, GUO H Y, HOU W L, et al. Synthesis, structure and photocatalytic properties of benzo[ghi] perylenetriimide/graphitic carbon nitride composite[J]. Mater Lett,2018,221:38−41. doi: 10.1016/j.matlet.2018.03.045
    [31] HUANG L Y, LI Y P, XU H, et al. Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity[J]. RSC Adv,2013,3(44):22269−22279. doi: 10.1039/c3ra42712a
    [32] NIE C, ZHANG H T, MA H F, et al. Effects of Ce addition on Fe-Cu catalyst for Fischer-Tropsch synthesis[J]. Catal Lett,2019,149(5):1375−1382. doi: 10.1007/s10562-019-02700-2
    [33] DING M Y, YANG Y, WU B S, et al. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy,2015,160:982−989. doi: 10.1016/j.apenergy.2014.12.042
    [34] LU J Z, YANG L J, XU B L, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal,2014,4(2):613−621. doi: 10.1021/cs400931z
    [35] YANG Q, WANG W Y, ZHAO Y X, et al. Metal-free mesoporous carbon nitride catalyze the Friedel-Crafts reaction by activation of benzene[J]. RSC Adv,2015,5(68):54978−54984. doi: 10.1039/C5RA08871B
    [36] CVIJOVIC L, KOTA K. Creating highly wettable paper towel-like aluminum surfaces through tuned bulk micro-manufacturing[J]. Int J Adv Manuf Technol,2018,98:2601−2609. doi: 10.1007/s00170-018-2290-5
    [37] LI Z Z, MENG X C, ZHANG Z S. Fabrication of surface hydroxyl modified g-C3N4 with enhanced photocatalytic oxidation activity[J]. Catal Sci Technol,2019,9(15):3979−3993. doi: 10.1039/C9CY00550A
    [38] ORDOMSKY V V, LEGRAS B, CHENG K, et al. The role of carbon atoms of supported iron carbides in Fischer-Tropsch synthesis[J]. Catal Sci Technol,2015,5(3):1433−1437. doi: 10.1039/C4CY01631A
    [39] GUNASOORIYA G T K K, VAN BAVEL A P, KUIPERS H P C E, et al. Key role of surface hydroxyl groups in C-O activation during Fischer-Tropsch synthesis[J]. ACS Catal,2016,6(6):3660−3664. doi: 10.1021/acscatal.6b00634
    [40] GU B, HE S, ZHOU W, et al. Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas[J]. J Energy Chem,2017,26(4):608−615. doi: 10.1016/j.jechem.2017.04.009
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  147
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-06-03
  • 录用日期:  2023-06-04
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2024-01-09

目录

    /

    返回文章
    返回