留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-Al spinel oxide as a sustained release catalyst for methanol steam reforming: Enhancing the catalytic performance via surface reconstruction

HOU Xiaoning QING Shaojun LIU Yajie ZHANG Lei GAO Zhixian

侯晓宁, 庆绍军, 刘雅杰, 张磊, 高志贤. Cu-Al尖晶石氧化物缓释催化剂表面重构对促进甲醇重整反应性能的研究[J]. 燃料化学学报(中英文), 2024, 52(1): 47-54. doi: 10.1016/S1872-5813(23)60379-2
引用本文: 侯晓宁, 庆绍军, 刘雅杰, 张磊, 高志贤. Cu-Al尖晶石氧化物缓释催化剂表面重构对促进甲醇重整反应性能的研究[J]. 燃料化学学报(中英文), 2024, 52(1): 47-54. doi: 10.1016/S1872-5813(23)60379-2
HOU Xiaoning, QING Shaojun, LIU Yajie, ZHANG Lei, GAO Zhixian. Cu-Al spinel oxide as a sustained release catalyst for methanol steam reforming: Enhancing the catalytic performance via surface reconstruction[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 47-54. doi: 10.1016/S1872-5813(23)60379-2
Citation: HOU Xiaoning, QING Shaojun, LIU Yajie, ZHANG Lei, GAO Zhixian. Cu-Al spinel oxide as a sustained release catalyst for methanol steam reforming: Enhancing the catalytic performance via surface reconstruction[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 47-54. doi: 10.1016/S1872-5813(23)60379-2

Cu-Al尖晶石氧化物缓释催化剂表面重构对促进甲醇重整反应性能的研究

doi: 10.1016/S1872-5813(23)60379-2
详细信息
  • 中图分类号: O643.36

Cu-Al spinel oxide as a sustained release catalyst for methanol steam reforming: Enhancing the catalytic performance via surface reconstruction

Funds: The project was supported by the Fundamental Research Program (Free Exploration) of Shanxi Province of China (20210302124338, 20210302123358) and the Postdoctoral program of Administrative Committee of Taiyuan Economic Development Zone
More Information
  • 摘要: Cu-Al尖晶石氧化物作为甲醇水蒸气重整制氢缓释催化剂,在反应过程中逐渐释放活性Cu,其催化行为与催化剂的表面结构密切相关。本研究采用酸碱溶液对固相球磨法合成的Cu-Al尖晶石催化剂进行表面处理,以期通过表面组成及结构的修饰来提高其催化性能。研究结果表明,硝酸、氨水、氢氧化钠溶液与催化剂的作用差别极大,酸处理去除了催化剂表面的Cu和Al物种,氢氧化钠溶液处理则主要去除了Al物种,氨水溶液处理作用最弱,去除了极少量的Cu和Al。伴随着Cu、Al物种的流失,催化剂表面结构重组和铜物种再分布改变了铜的缓释行为。反应性能评价结果表明,硝酸和氨水处理改善了缓释催化性能,其中,硝酸处理后的催化剂表现出更优异的催化稳定性;而氢氧化钠溶液处理不利于缓释催化性能的提高。结合反应后催化剂表征结果,阐明缓释Cu粒径大小和Cu晶粒微观结构应变对催化性能发挥着重要作用。当前工作为提高缓释催化提供了一种切实可行的方法。
  • FIG. 2879.  FIG. 2879.

    FIG. 2879.  FIG. 2879.

    Figure  1  Pore size distribution of untreated and treated CA catalysts

    Figure  2  TEM images of CA (a), (c) and CA-HNO3 (b), (d) catalysts

    Figure  3  XRD patterns (a) and the enlarged patterns (b) of untreated and treated catalysts by acid and basic solution

    Figure  4  H2-TPR patterns of catalysts

    Figure  5  (a) Cu 2p and (b) Al 2p XPS spectra of untreated and treated catalysts

    Figure  6  The conversion of methanol in untreated and treated catalysts

    Figure  7  The TPR profile of the tested catalysts (t represents the corresponding tested catalyst)

    Figure  8  XRD spectra of the tested catalysts

    Figure  9  The profile of copper particle size, microstrain and reactivity versus untreated and treated catalysts

    Table  1  Results of the element extraction analysis and textural structural properties of the untreated and treated catalysts

    SampleCACA-HNO3CA-NH3CA-NaOH
    Loss of Cua w/%02.400.100.20
    Loss of Ala w/%01.600.366.90
    SBET/(m2·g−1)40.8447.0831.4941.97
    dpore/nm26.0433.1824.2132.05
    vpore/(cm3·g−1)0.2660.390.1910.336
    a: The molar percentage of metal in catalyst extracted with the chemical leaching solution is analyzed by ICP.
    下载: 导出CSV

    Table  2  Structural properties of the catalysts

    SampleCACA-HNO3CA-NH3CA-NaOH
    a/A7.9928.07488.05078.0360
    dspinel/nm14.516.215.415.1
    dCu/nm27.911.213.512.6
    Microstrain/%0.08790.08370.08500.0957
    Note: a represents the lattice parameter of the spinel phase obtained by the XRD pattern; dspinel represents average spinel particle size of the spinel (sp) calculated by using XRD data;
    dCu represents the copper particle sizes of the tested catalyst calculated by the Scherrer equation from the XRD patterns; Microstrain of the copper crystals in tested catalysts is also calculated by XRD data.
    下载: 导出CSV

    Table  3  The component content in the catalyst

    SamplesCACA-HNO3CA-NH3CA-NaOH
    Xnon spinela/%13.112.313.019.6
    Xeasily reduced spinela/%70.074.674.371.4
    Xhardly reduced spinela/%16.913.112.79.0
    Cu/Alb (%)5.76.36.57.0
    CuO/Sp CuOb (%)54/4613/8756/4428/72
    a: The molar fraction of non spinel copper species, easily reducible spinel Cu (II) and hardly reducible spinel Cu (II) are denoted as Xnon spinel, Xeasily reduced spinel and Xhardly reduced spinel, respectively according to H2-TPR area integration;
    b: Based on XPS data, Cu/Al denotes the molar fraction of surface Cu to Al; CuO/Sp CuO denotes the molar fraction of non spinel CuO with respect to the spinel CuO species.
    下载: 导出CSV
  • [1] TIAN N, ZHOU Z Y, SUN S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science,2007,316(5825):732−735. doi: 10.1126/science.1140484
    [2] ZHANG L, ROLING L T, WANG X, et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets[J]. Science,2015,349(6246):412−416. doi: 10.1126/science.aab0801
    [3] SANCHES S G, FLORES H, SILVA M I P. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming[J]. Mol Catal,2018,454:55−62. doi: 10.1016/j.mcat.2018.05.012
    [4] LI G, GU C, ZHU W, et al. Hydrogen production from methanol decomposition using Cu-Al spinel catalysts[J]. J Clean Prod,2018,183:415−423. doi: 10.1016/j.jclepro.2018.02.088
    [5] LI G. Study of copper spinel catalyst for hydrogen generation by methanol[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2012.
    [6] XI H, HOU X, LIU Y, et al. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed,2014,53(44):11886−11889. doi: 10.1002/anie.201405213
    [7] LIU Y, QING S, HOU X, et al. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol,2017,7(21):5069−5078.
    [8] LIU Y, QING S, HOU X, et al. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem,2018,10(24):5698−5706. doi: 10.1002/cctc.201801472
    [9] HOU X, QING S, LIU Y, et al. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy,2020,45(1):477−489. doi: 10.1016/j.ijhydene.2019.10.164
    [10] SHI L, WANG D, YU X, et al. Adsorption of Cun (n = 1–4) clusters on CuAl2O4 spinel surface: A DFT study[J]. Mol Catal,2019,468:29−35. doi: 10.1016/j.mcat.2019.02.009
    [11] KANGO S, KALIA S, CELLI A, et al. The Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review[J]. Prog Polym Sci,2013,38:1232−1261. doi: 10.1016/j.progpolymsci.2013.02.003
    [12] HONG R, PAN T, QIAN J, et al. Synthesis and surface modification of ZnO nanoparticles[J]. Chem Eng J,2006,119:71−81. doi: 10.1016/j.cej.2006.03.003
    [13] PALMA V, RUOCCO C, CORTESE M, et al. Bioalcohol reforming: an overview of the recent advances for the enhancement of catalyst stability[J]. Catalysts,2020,10:665. doi: 10.3390/catal10060665
    [14] KUSCHE M, ENZENBERGER F, BAJUS S, et al. Enhanced activity and selectivity in catalytic methanol steam reforming by basic alkali metal salt coatings[J]. Angew Chem,2013,125:5132−5136. doi: 10.1002/ange.201209758
    [15] WANG Z, LIU P, HAN J, et al. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying[J]. Nat Commun,2017,8(1):1066. doi: 10.1038/s41467-017-01085-3
    [16] TANG W, XIAO W, WANG S, et al. Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: A comparative study with Pt and Pd based catalysts[J]. Appl Catal B: Environ,2018,226:585−595. doi: 10.1016/j.apcatb.2017.12.075
    [17] SEVERINO F, BRITO J L, LAINE J, et al. Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 spinel type catalysts[J]. J Catal,1998,177(1):82−95. doi: 10.1006/jcat.1998.2094
    [18] LIN X C, LI X, DING X W, et al. Application of Na/K modified ZSM-5 zeolite in direct catalytic synthesis of light olefins from syngas[J]. Mod Chem Ind,2020,40(3):126−130.
    [19] RODENBOUGH P P, ZHENG C, LIU Y, et al. Lattice expansion in metal oxide nanoparticles: MgO, Co3O4, & Fe3O4[J]. J Am Ceram Soc,2017,100(1):384−392. doi: 10.1111/jace.14478
    [20] LOU Y, MA J, CAS X, et al. Promoting effects of In2O3 on Co3O4 for CO oxidation: Tuning O2 activation and CO adsorption strength simultaneously[J]. ACS Catal,2014,4(11):4143−4152. doi: 10.1021/cs501049r
    [21] IGBARI O, XIE Y, JIN Z, et al. Microstructural and electrical properties of CuAlO2 ceramic prepared by a novel solvent-free ester elimination process[J]. J Alloy Compd,2015,653:219−227. doi: 10.1016/j.jallcom.2015.08.268
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  49
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 修回日期:  2023-05-31
  • 录用日期:  2023-05-31
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2024-01-09

目录

    /

    返回文章
    返回