留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Catalytic combustion of toluene over cerium modified CuMn/Al2O3/cordierite monolithic catalyst

DAI Yuhang LI Kaige ZHAO Jinxian REN Jun QUAN Yanhong

代宇航, 李凯歌, 赵金仙, 任军, 权燕红. 铈改性CuMn/Al2O3/堇青石整体催化剂的甲苯催化燃烧性能研究[J]. 燃料化学学报(中英文), 2024, 52(1): 55-64. doi: 10.1016/S1872-5813(23)60381-0
引用本文: 代宇航, 李凯歌, 赵金仙, 任军, 权燕红. 铈改性CuMn/Al2O3/堇青石整体催化剂的甲苯催化燃烧性能研究[J]. 燃料化学学报(中英文), 2024, 52(1): 55-64. doi: 10.1016/S1872-5813(23)60381-0
DAI Yuhang, LI Kaige, ZHAO Jinxian, REN Jun, QUAN Yanhong. Catalytic combustion of toluene over cerium modified CuMn/Al2O3/cordierite monolithic catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 55-64. doi: 10.1016/S1872-5813(23)60381-0
Citation: DAI Yuhang, LI Kaige, ZHAO Jinxian, REN Jun, QUAN Yanhong. Catalytic combustion of toluene over cerium modified CuMn/Al2O3/cordierite monolithic catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 55-64. doi: 10.1016/S1872-5813(23)60381-0

铈改性CuMn/Al2O3/堇青石整体催化剂的甲苯催化燃烧性能研究

doi: 10.1016/S1872-5813(23)60381-0
详细信息
  • 中图分类号: O643

Catalytic combustion of toluene over cerium modified CuMn/Al2O3/cordierite monolithic catalyst

More Information
  • 摘要: 本研究以堇青石为载体,采用超声浸渍法制备了一系列CuMnCex/Al2O3/堇青石整体式催化剂,同时,通过N2吸附-脱附、XRD、SEM、EDX、H2-TPR、O2-TPD、XPS和EPR等方法对样品的物理、化学性质进行了系统的表征分析。实验结果表明,CuMnCex/Al2O3/堇青石整体式催化剂中的Ce含量明显影响甲苯催化燃烧性能。其中,CuMnCe2/Al2O3/堇青石整体式催化剂对甲苯氧化具有最高活性,当甲苯浓度为1 g/L、空速为78000 mL/(g·h)、温度为263 °C时甲苯转化率达到90%,究其原因为CeO2在CuMnOx上分散均匀,不仅提高了氧空位的浓度和氧物种的迁移率,还增强了催化剂的低温还原性。同时,CuMnCe2/Al2O3/堇青石整体式催化剂在长期评价和循环测试中呈现良好的稳定性。
  • FIG. 2880.  FIG. 2880.

    FIG. 2880.  FIG. 2880.

    Figure  1  N2 adsorption-desorption isotherms (a) and pore size distributions (b) of CuMnCex/Al2O3/Cor monolithic catalysts

    Figure  2  XRD patterns of CuMnCex powder (a) and CuMnCex/Al2O3/Cor (b)

    Figure  3  SEM images of CuMnCex/Al2O3/Cor monolithic catalysts

    (a): CuMn/Al2O3/Cor; (b): CuMnCe0.5/Al2O3/Cor; (c): CuMnCe0.8/Al2O3/Cor; (d): CuMnCe2/Al2O3/Cor; (e): CuMnCe3/Al2O3/Cor.

    Figure  4  EDX images of CuMnCex/Al2O3/Cor monolithic catalysts

    (a): CuMnCe0.5/Al2O3/Cor; (b): CuMnCe0.8/Al2O3/Cor; (c): CuMnCe2/Al2O3/Cor; (d): CuMnCe3/Al2O3/Cor.

    Figure  5  H2-TPR spectra of CuMnCex/Al2O3/Cor catalysts

    Figure  6  O2-TPD spectra of CuMnCex/Al2O3/Cor catalysts

    Figure  7  XPS spectra of (a) Mn 2p3/2, (b) Ce 3d, (c) Cu 2p3/2 and (d) O 1s

    Figure  8  EPR results of CuMnCex catalysts

    Figure  9  Catalytic performance of CuMnCex/Al2O3/Cor (x=0, 0.5, 0.8, 2, 3) catalysts for toluene combustion

    Reaction conditions: toluene concentration=1 g/L, total flow rate=130 mL/min, GHSV=78000 mL/(g·h).

    Figure  10  Long-term evaluation (a) and recycling performance (b) of CuMnCe2/Al2O3/Cor catalyst for toluene oxidation

    Reaction conditions: toluene concentration=1 g/L, temperature=270 °C, total flow rate=130 mL/min, GHSV=78000 mL/(g·h).

    Table  1  Structural properties, loading percentages and weight loss of monolithic catalyst

    Sample${S_{ {\rm{BET} } }}^{\rm{a}}$
    /(m2·g−1)
    ${v_{{\rm{total}}}}^{\rm{b}} $
    /(cm3·g−1)
    dpc
    /nm
    Loadingd
    w/%
    Weight losse w/%
    Cordierite0.2
    CuMn11.50.03047.018.50.45
    CuMnCe0.59.40.02336.219.60.42
    CuMnCe0.812.40.02916.120.30.48
    CuMnCe217.80.04136.626.00.51
    CuMnCe310.80.04049.027.00.52
    Note: a: Obtained by BET method; b: Estimated from the amount adsorbed at p/p0=0.99; c: Calculated using the BJH method; d: Active component load rate; e: Weight loss rate of active component.
    下载: 导出CSV

    Table  2  Surface elemental analysis of CuMn and CuMnCex monolithic catalysts

    SampleMn4+/MnCe3+/CeCu+/Cu2+Osur/Ototal
    CuMn0.250.110.36
    CuMnCe0.50.270.170.090.38
    CuMnCe0.80.310.180.090.44
    CuMnCe20.370.200.090.46
    CuMnCe30.320.140.100.43
    下载: 导出CSV

    Table  3  Catalytic activity of several related catalysts for toluene combustion

    CatalystToluene concentration
    /(g·L−1)
    Catalyst amount
    /g
    GHSV
    /(mL·g–1·h–1)
    t50
    /°C
    t90
    /°C
    Ref.
    CuMn/Al2O3/Cor10.178000286300this work
    CuMnCe0.5/Al2O3/Cor10.178000274287this work
    CuMnCe0.8/Al2O3/Cor10.178000267282this work
    CuMnCe2/Al2O3/Cor10.178000244263this work
    CuMnCe3/Al2O3/Cor10.178000262284this work
    Cu-Co/Halloysite0.60.260000272301[58]
    CeO2/δ-MnO210.215000237277[59]
    MnCe/ZrO210.136000257290[60]
    MOx/HZSM-510.415000276285[61]
    Cu-Mn-Ce/Al2O30.50.520000315340[62]
    下载: 导出CSV
  • [1] MCDONALD B C, DE GOUW J A, GILMAN J B, et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions[J]. Science,2018,359:760−764. doi: 10.1126/science.aaq0524
    [2] PENG Y, YANG Q, WANG L, et al. VOC emissions of coal-fired power plants in China based on life cycle assessment method[J]. Fuel,2021,292:120325. doi: 10.1016/j.fuel.2021.120325
    [3] SEKIGUCHI K, YASUI F, FUJII E. Capturing of gaseous and particulate pollutants into liquid phase by a water/oil column using microbubbles[J]. Chemosphere,2020,256:126996. doi: 10.1016/j.chemosphere.2020.126996
    [4] LI Z, JIN Y, CHEN T, et al. Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity[J]. Sep Purif Technol,2021,272:118659. doi: 10.1016/j.seppur.2021.118659
    [5] YI S, WAN Y. Volatile organic compounds (VOCs) recovery from aqueous solutions via pervaporation with vinyltriethoxysilane-grafted-silicalite-1/polydimethylsiloxane mixed matrix membrane[J]. Chem Eng J,2017,313:1639−1646. doi: 10.1016/j.cej.2016.11.061
    [6] YAO X, ZHANG J, LIANG X, et al. Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: Effect of the structure of zeolites support[J]. Chemosphere,2018,208:922−930. doi: 10.1016/j.chemosphere.2018.06.064
    [7] LI Y, GUO Y, XUE B. Catalytic combustion of methane over M (Ni, Co, Cu) supported on ceria-magnesia[J]. Fuel Process Technol,2009,90:652−656. doi: 10.1016/j.fuproc.2008.12.002
    [8] HUANG H, XU Y, FENG Q, et al. Low temperature catalytic oxidation of volatile organic compounds: A review[J]. Catal Sci Technol,2015,5:2649−2669. doi: 10.1039/C4CY01733A
    [9] KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs) – A review[J]. Atmos Environ,2016,140:117−134. doi: 10.1016/j.atmosenv.2016.05.031
    [10] WANG Z, YANG H, LIU R, et al. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst[J]. J Hazard Mater,2020,392:122258. doi: 10.1016/j.jhazmat.2020.122258
    [11] ZHANG Z, ZHENG J, SHANGGUAN W. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review[J]. Catal Today,2016,264:270−278. doi: 10.1016/j.cattod.2015.10.040
    [12] KIM H S, KIM H J, KIM J H, et al. Noble-metal-based catalytic oxidation technology trends for volatile organic compound (VOC) removal[J]. Catalysts,2022,12:63. doi: 10.3390/catal12010063
    [13] WANG S, GU J, SHAN R, et al. Catalytic toluene steam reforming using Ni supported catalyst from pyrolytic peat[J]. Fuel Process Technol,2021,224:107032. doi: 10.1016/j.fuproc.2021.107032
    [14] LI K, LI T, DAI Y, et al. Highly active urchin-like MCo2O4 (M = Co, Cu, Ni or Zn) spinel for toluene catalytic combustion[J]. Fuel,2022,318:123648. doi: 10.1016/j.fuel.2022.123648
    [15] GUO Y, WEN M, SONG S, et al. Enhanced catalytic elimination of typical VOCs over ZnCoOx catalyst derived from in situ pyrolysis of ZnCo bimetallic zeolitic imidazolate frameworks[J]. Appl Catal B: Environ,2022,308:121212. doi: 10.1016/j.apcatb.2022.121212
    [16] PIUMETTI M, FINO D, RUSSO N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs[J]. Appl Catal B: Environ,2015,163:277−287. doi: 10.1016/j.apcatb.2014.08.012
    [17] ZHOU L, ZHANG B, LI Z, et al. Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs[J]. Mol Catal,2020,489:110920. doi: 10.1016/j.mcat.2020.110920
    [18] CAI T, LIU Z, YUAN J, et al. The structural evolution of MnOx with calcination temperature and their catalytic performance for propane total oxidation[J]. Appl Surf Sci,2021,565:150596. doi: 10.1016/j.apsusc.2021.150596
    [19] CHEN G, CAI Y, ZHANG H, et al. Pt and Mo Co-Decorated MnO2 nanorods with superior resistance to H2O, sintering, and HCl for catalytic oxidation of chlorobenzene[J]. Environ Sci Technol,2021,55:14204−14214. doi: 10.1021/acs.est.1c05086
    [20] CHEN J, CHEN X, XU W, et al. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chem Eng J,2017,330:281−293. doi: 10.1016/j.cej.2017.07.147
    [21] HU W, HUANG J, XU J, et al. Insights into the superior performance of mesoporous MOFs-derived Cu-Mn oxides for toluene total catalytic oxidation[J]. Fuel Process Technol,2022,236:107424. doi: 10.1016/j.fuproc.2022.107424
    [22] AGUILERA D A, PEREZ A, MOLINA R, et al. Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs[J]. Appl Catal B: Environ,2011,104:144−150. doi: 10.1016/j.apcatb.2011.02.019
    [23] WANG L, SUN Y, ZHU Y, et al. Revealing the mechanism of high water resistant and excellent active of CuMn oxide catalyst derived from Bimetal-Organic framework for acetone catalytic oxidation[J]. J Colloid Interface Sci,2022,622:577−590. doi: 10.1016/j.jcis.2022.04.155
    [24] WANG Y, YANG D, LI S, et al. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation[J]. Chem Eng J,2019,357:258−268. doi: 10.1016/j.cej.2018.09.156
    [25] LU J, ASAHINA S, TAKAMI S, et al. Interconnected 3D framework of CeO2 with high oxygen storage capacity: High-Resolution scanning electron microscopic observation[J]. ACS Appl Nano Mater,2020,3:2346−2353. doi: 10.1021/acsanm.9b02446
    [26] XIAO Y, LI H, XIE K. Activating lattice oxygen at the twisted surface in a mesoporous CeO2 single crystal for efficient and durable catalytic CO oxidation[J]. Angew Chem Int Ed,2021,60:5240−5244. doi: 10.1002/anie.202013633
    [27] WANG C, ZHANG C, HUA W, et al. Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chem Eng J, 2017, 315: 392-402.
    [28] WANG Y, XUE R, ZHAO C, et al. Effects of Ce in the catalytic combustion of toluene on CuxCe1−xFe2O4[J]. Colloid Surface A,2018,540:90−97. doi: 10.1016/j.colsurfa.2017.12.067
    [29] MIAO C, LIU J, ZHAO J, et al. Catalytic combustion of toluene over CeO2-CoOx composite aerogels[J]. New J Chem,2020,44:11557−11565. doi: 10.1039/D0NJ00091D
    [30] GÓMEZ D M, GATICA J M, HERNÁNDEZ-GARRIDO J C, et al. A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation[J]. Appl Catal B: Environ,2014,144:425−434. doi: 10.1016/j.apcatb.2013.07.045
    [31] MA M, YANG R, JIANG Z, et al. Fabricating M/Al2O3/cordierite (M = Cr, Mn, Fe, Co, Ni and Cu) monolithic catalysts for ethyl acetate efficient oxidation: Unveiling the role of water vapor and reaction mechanism[J]. Fuel,2021,303:121244. doi: 10.1016/j.fuel.2021.121244
    [32] HEIBEL A K, SORENSEN C M. Monolithic catalysts for the chemical industry[J]. Ind Eng Chem Res,2004,43:4602−4611. doi: 10.1021/ie030730q
    [33] ZHAO H, WANG H, QU Z. Synergistic effects in Mn-Co mixed oxide supported on cordierite honeycomb for catalytic deep oxidation of VOCs[J]. J Environ Sci,2022,112:231−243. doi: 10.1016/j.jes.2021.05.003
    [34] XIONG J, LUO Z, YANG J, et al. Robust and well-controlled TiO2-Al2O3 binary nanoarray-integrated ceramic honeycomb for efficient propane combustion[J]. CrystEngComm,2019,21:2727−2735. doi: 10.1039/C8CE02012D
    [35] ZHOU H, GE M, WU S, et al. Iron based monolithic catalysts supported on Al2O3, SiO2, and TiO2: A comparison for NO reduction with propane[J]. Fuel,2018,220:330−338. doi: 10.1016/j.fuel.2018.01.077
    [36] TIAN F, LI K, SU Y. Catalytic performance and characterization of Ce-Modified Fe catalysts supported on Al2O3 for SCR-C3H8[J]. Catal Surv Asia,2020,24:239−249. doi: 10.1007/s10563-020-09306-4
    [37] LU H, ZHOU Y, HUANG H, et al. In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion[J]. J Rare Earth,2011,29(9):855−860. doi: 10.1016/S1002-0721(10)60555-8
    [38] BEHAR S, GONZALEZ P, AGULHON P, et al. New synthesis of nanosized Cu-Mn spinels as efficient oxidation catalysts[J]. Catal Today,2012,189:35−41. doi: 10.1016/j.cattod.2012.04.004
    [39] LIU P, WEI G, LIANG X, et al. Synergetic effect of Cu and Mn oxides supported on palygorskite for the catalytic oxidation of formaldehyde: Dispersion, microstructure, and catalytic performance[J]. Appl Clay Sci,2018,161:265−273. doi: 10.1016/j.clay.2018.04.032
    [40] XIAO R, QIN R, ZHANG C, et al. Catalytic decomposition of ethyl acetate over La-modified Cu-Mn oxide supported on honeycomb ceramic[J]. J Rare Earth,2021,39:817−825. doi: 10.1016/j.jre.2020.10.015
    [41] SUMRUNRONNASAK S, CHANLEK N, PIMPHA N. Improved CeCuOx catalysts for toluene oxidation prepared by aqueous cationic surfactant precipitation method[J]. Mater Chem Phys,2018,216:143−152.
    [42] DÍAZ C C, YESTE M P, VIDAL H, et al. In situ generation of Mn1-xCex system on cordierite monolithic supports for combustion of n-hexane. Effects on activity and stability[J]. Fuel,2020,262:116564. doi: 10.1016/j.fuel.2019.116564
    [43] FENG J, HOU Z Y, ZHOU X Y, et al. Low-temperature catalytic oxidation of toluene over Mn-Co-O/Ce0.65Zr0.35O2 mixed oxide catalysts[J]. Chem Pap,2018,72:161−173. doi: 10.1007/s11696-017-0267-8
    [44] DENG L, HUANG C, KAN J, et al. Effect of coating modification of cordierite carrier on catalytic performance of supported NiMnO3 catalysts for VOCs combustion[J]. J Rare Earth,2018,36:265−272. doi: 10.1016/j.jre.2017.07.015
    [45] LIU G, YUE R, JIA Y, et al. Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis[J]. Particuology,2013,11:454−459. doi: 10.1016/j.partic.2012.09.013
    [46] LUO Y, ZHENG Y, ZUO J, et al. Insights into the high performance of Mn-Co oxides derived from metalorganic frameworks for total toluene oxidation[J]. J Hazard Mater,2018,349:119−127. doi: 10.1016/j.jhazmat.2018.01.053
    [47] WANG T, SUN Y, ZHOU Y, et al. Identifying influential parameters of octahedrally coordinated cations in spinel ZnMnxCo2−xO4 oxides for the oxidation reaction[J]. ACS Catal,2018,8:8568−8577. doi: 10.1021/acscatal.8b02376
    [48] LI S, MO S, WANG D, et al. Synergistic effect for promoted benzene oxidation over monolithic CoMnAlO catalysts derived from in situ supported LDH film[J]. Catal Today,2019,332:132−138. doi: 10.1016/j.cattod.2018.08.014
    [49] CUO Z, WANG D, GONG Y, et al. A novel porous ceramic membrane supported monolithic Cu-doped Mn-Ce catalysts for benzene combustion[J]. Catalysts,2019,9:652. doi: 10.3390/catal9080652
    [50] LI W, LIU H, MA X, et al. Fabrication of silica supported Mn-Ce benzene oxidation catalyst by a simple and environment-friendly oxalate approach[J]. J Porous Mater,2018,25:107−117. doi: 10.1007/s10934-017-0424-z
    [51] ZUO S, YANG P, WANG X. Efficient and environmentally friendly synthesis of AlFe-PILC-Supported MnCe catalysts for benzene combustion[J]. ACS Omega,2017,2:5179−5186. doi: 10.1021/acsomega.7b00592
    [52] CUO Z, DENG Y, LI W, et al. Monolithic Mn/Ce-based catalyst of fibrous ceramic membrane for complete oxidation of benzene[J]. Appl Surf Sci,2018,456:594−601. doi: 10.1016/j.apsusc.2018.06.207
    [53] CHEN J, CHEN X, YAN D, et al. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants[J]. Appl Catal B: Environ,2019,250:396−407. doi: 10.1016/j.apcatb.2019.03.042
    [54] ZANG M, ZHAO C, WANG Y, et al. Ceramic-monolith-supported La0.8Ce0.2MnO3 catalysts for toluene oxidation[J]. Mater Lett,2019,253:196−200. doi: 10.1016/j.matlet.2019.05.135
    [55] ZANG M, ZHAO C, WANG Y, et al. Low temperature catalytic combustion of toluene over three-dimensionally ordered La0.8Ce0.2MnO3/cordierite catalysts[J]. Appl Surf Sci,2019,483:355−362. doi: 10.1016/j.apsusc.2019.03.320
    [56] WANG S, LI T, CHENG X, et al. Regulating the concentration of dissolved oxygen to achieve the directional transformation of reactive oxygen species: A controllable oxidation process for ciprofloxacin degradation by calcined CuCoFe-LHD[J]. Water Res,2023,233:119744. doi: 10.1016/j.watres.2023.119744
    [57] WANG S, ZHU J, LI T, et al. Oxygen vacancy-mediated CuCoFe/tartrate-LHD catalyst directly activates oxygen to produce superoxide radicals: Transformation of active species and implication for nitrobenzene degradation[J]. Environ Sci Technol,2022,56:7924−47934. doi: 10.1021/acs.est.2c00522
    [58] CARRILLO A M, CARRIAZO J G. Cu and Co oxides supported on halloysite for the total oxidation of toluene[J]. Appl Catal B: Environ,2015,164:443−452. doi: 10.1016/j.apcatb.2014.09.027
    [59] LI L, JING F, YAN J, et al. Highly effective self-propagating synthesis of CeO2-doped MnO2 catalysts for toluene catalytic combustion[J]. Catal Today,2017,297:167−172. doi: 10.1016/j.cattod.2017.04.053
    [60] LI L, SONG L, FEI Z, et al. Effect of different supports on activity of Mn-Ce binary oxides catalysts for toluene combustion[J]. J Rare Earth,2020,40:645−651.
    [61] HUANG H, ZHANG C, WANG L, et al. Promotional effect of HZSM-5 on the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts[J]. Catal Sci Technol,2016,6:4260−4270. doi: 10.1039/C5CY02011E
    [62] HUANG H, LING W, JIN L, et al. Support effect on catalytic activity of VOCs combustion over supported Cu-Mn-Ce catalysts[J]. J Rare Earths,2012,30(3):295−300.
    [63] LIU X, ZHOU K, WANG L, et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J Am Chem Soc,2009,131:3140−3141. doi: 10.1021/ja808433d
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  84
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-06-13
  • 录用日期:  2023-06-16
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-01-09

目录

    /

    返回文章
    返回