留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-Zr复合氧化物催化耦合甘油和CO2合成碳酸甘油酯

徐换换 柯义虎

徐换换, 柯义虎. Cu-Zr复合氧化物催化耦合甘油和CO2合成碳酸甘油酯[J]. 燃料化学学报(中英文), 2024, 52(2): 171-183. doi: 10.1016/S1872-5813(23)60384-6
引用本文: 徐换换, 柯义虎. Cu-Zr复合氧化物催化耦合甘油和CO2合成碳酸甘油酯[J]. 燃料化学学报(中英文), 2024, 52(2): 171-183. doi: 10.1016/S1872-5813(23)60384-6
XU Huanhuan, KE Yihu. Synthesis of glycerol carbonate from glycerol and CO2 over Cu-Zr complex oxide[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 171-183. doi: 10.1016/S1872-5813(23)60384-6
Citation: XU Huanhuan, KE Yihu. Synthesis of glycerol carbonate from glycerol and CO2 over Cu-Zr complex oxide[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 171-183. doi: 10.1016/S1872-5813(23)60384-6

Cu-Zr复合氧化物催化耦合甘油和CO2合成碳酸甘油酯

doi: 10.1016/S1872-5813(23)60384-6
基金项目: 国家自然科学基金 (21862001),宁夏餐厨废油资源化利用技术研发创新团队(2022QCXTD03)和宁夏低品质资源高值化利用技术研发人才小高地资助
详细信息
    通讯作者:

    Tel: 13895397566, E-mail: keyihu123@nmu.edu.cn

  • 中图分类号: O643.36

Synthesis of glycerol carbonate from glycerol and CO2 over Cu-Zr complex oxide

Funds: The project was supported by National Natural Science Foundation of China (21862001), the Innovative Team for Transforming Waste Cooking Oil into Clean Energy and High Value-Added Chemicals (2022QCXTD03) and the Ningxia Low-Grade Resource High Value Utilization and Environmental Chemical Integration Technology Innovation Team Project, China.
  • 摘要: 采用水热法合成了一系列不同Cu-Zr物质的量比的Cu1−xZrxO2双金属氧化物,以此为催化剂,将生物柴油生产过程副产物甘油与温室气体CO2耦合反应制备精细化工产品碳酸甘油酯。结果表明,Zr掺杂量不同,催化剂对甘油羰基化反应效果呈现明显差距,最佳反应条件下,Cu0.99Zr0.01O2催化剂具有最佳催化性能,甘油转化率和碳酸甘油酯选择性分别达到64.1%和85.9%。并且发现与纯CuO和纯ZrO2相比,Cu1−xZrxO2复合氧化物在甘油与CO2耦合反应体系中表现出更强的催化活性,结合X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N2吸附-脱附、程序升温还原(H2-TPR)、程序升温脱附(TPD)、傅里叶变换红外光谱(FT-IR)等表征手段,推测高活性与Zr在CuO表面的分散程度、催化剂表面氧物种含量及酸碱性位点数量有关。此外,为了研究催化剂的稳定性,以Cu0.99Zr0.01O2催化剂作为基准进行了循环性能测试,结果表明,经过六次循环后,甘油的转化率和碳酸甘油酯的选择性未发生明显变化,说明该催化剂稳定性良好。
  • FIG. 2926.  FIG. 2926.

    FIG. 2926.  FIG. 2926.

    图  1  Cu1−xZrxO2催化剂的XRD谱图

    Figure  1  XRD patterns of the Cu1−xZrxO2 catalyst

    图  2  Cu1−xZrxO2催化剂的SEM图像

    Figure  2  SEM images of the catalysts ((a) CuO, (b) ZrO2, (c) Cu0.99Zr0.01O2, (d) Cu0.95Zr0.05O2, (e) Cu0.75Zr0.25O2, (f) Cu0.60Zr0.40O2, (j) Cu0.40Zr0.60O2)

    图  3  Cu0.99Zr0.01O2催化剂(a)、(b)TEM图像、(c)HRTEM图像和(d)SAED图像

    Figure  3  (a), (b) TEM, (c) HRTEM images and (d) SAED of Cu0.99Zr0.01O2 catalyst

    图  4  Cu0.99Zr0.01O2催化剂的TEM-Mapping图像

    Figure  4  TEM-mapping of the Cu0.99Zr0.01O2 catalyst

    图  5  Cu1−xZrxO2催化剂的XPS谱图

    Figure  5  XPS spectra of Cu1−xZrxO2 catalysts ((a) full spectra, (b) Cu 2p, (c) Zr 3d, (d) O 1s)

    图  6  Cu1−xZrxO2催化剂的(a)N2吸附-脱附和(b)孔径分布

    Figure  6  (a) N2 adsorption-desorption isotherms and (b) pore size distribution of Cu1−xZrxO2 catalysts

    图  7  Cu1−xZrxO2催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of the Cu1−xZrxO2 catalyst

    图  8  Cu1−xZrxO2催化剂的TPD谱图

    Figure  8  TPD profiles of the Cu1−xZrxO2 catalyst ((a) NH3-TPD, (b) CO2-TPD)

    图  9  Cu1−xZrxO2催化剂的FT-IR谱图

    Figure  9  FT-IR spectra of the Cu1−xZrxO2 catalyst

    图  10  反应条件对Cu0.99Zr0.01O2催化剂催化活性的影响

    Figure  10  Effect of reaction conditions on the catalytic activity of the Cu0.99Zr0.01O2 catalyst

    图  11  催化剂的重复使用性测试

    Figure  11  Reusability of the Cu0.99Zr0.01O2 catalyst

    图  12  甘油在催化剂上的羧化作用和2-氰基吡啶的水化作用

    Figure  12  Carboxylation of glycerol and CO2 in the presence of 2-cyanopyridine

    表  1  Cu1−xZrxO2样品表面氧种类含量

    Table  1  Surface oxygen species contents of Cu1−xZrxO2 samples

    SampleSurface oxygen species content/%
    OOOO/(O+O)
    CuO53.6433.0313.331.16
    Cu0.99Zr0.01O257.7829.8512.361.37
    Cu0.95Zr0.05O254.930.1414.901.22
    Cu0.75Zr0.25O247.0143.069.930.89
    Cu0.60Zr0.40O234.7838.9126.310.53
    Cu0.40Zr0.60O264.6026.928.481.82
    ZrO274.7415.0510.222.96
    下载: 导出CSV

    表  2  Cu1−xZrxO2催化剂的织构性质

    Table  2  Texture properties of the Cu1−xZrxO2 catalyst

    SampleSBET/(m2·g−1)Pore volume/
    (cm3·g−1)
    Average pore size/nm
    CuO8.20.02712.9
    Cu0.99Zr0.01O214.30.04411.2
    Cu0.95Zr0.05O218.30.06712.1
    Cu0.75Zr0.25O255.30.1529.0
    Cu0.60Zr0.40O259.50.1287.5
    Cu0.40Zr0.60O2106.60.1945.8
    ZrO2118.50.2496.5
    下载: 导出CSV

    表  3  不同Zr含量Cu1−xZrxO2催化剂催化活性

    Table  3  Evaluation of catalytic activity of the Cu1−xZrxO2 catalyst

    SampleConversion of glycerol/%Selectivity of GC/%Yield of GC/%
    Blank34.311.74.0
    CuO67.973.950.2
    Cu0.99Zr0.01O264.185.955.1
    Cu0.95Zr0.05O261.185.252.1
    Cu0.75Zr0.25O259.779.347.3
    Cu0.60Zr0.40O265.674.448.8
    Cu0.40Zr0.60O251.391.046.7
    ZrO234.011.84.0
    Reaction conditions: glycerol 0.92 g, 2-cyanopyridine 3.26 g, DMF 10 mL, 120 ℃, 5 h, p(CO2) = 3 MPa.
    下载: 导出CSV
  • [1] HÖÖK M, TANGANG X. Depletion of fossil fuels and anthropogenic climate change—A review[J]. Energy policy,2013,52:797−809. doi: 10.1016/j.enpol.2012.10.046
    [2] WANG Y, NIU C, WANG D. Metallic nanocatalysts for electrochemical CO2 reduction in aqueous solutions[J]. J Colloid Interface Sci,2018,527:95−106. doi: 10.1016/j.jcis.2018.05.041
    [3] HUANG C H, TAN C S. A review: CO2 utilization[J]. Aerosol Air Qual Res,2014,14(2):480−499. doi: 10.4209/aaqr.2013.10.0326
    [4] KNUTSON T R, TULEYA R E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization[J]. J Clim,2004,17(18):3477−3495. doi: 10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2
    [5] SONG L, JIANG Y X, ZHANG Z, et al. CO2=CO+: Recent advances in carbonylation of C-H bonds with CO2[J]. ChemComm,2020,56(60):8355−8367.
    [6] MATTIA D, JONES M D, O'BYRNE J P, et al. Towards carbon-neutral CO2 conversion to hydrocarbons[J]. ChemSusChem,2015,8(23):4064−4072. doi: 10.1002/cssc.201500739
    [7] RAHPEYMA S S, RAHEB J. Microalgae biodiesel as a valuable alternative to fossil fuels[J]. Bioenergy Res,2019,12(4):958−965. doi: 10.1007/s12155-019-10033-6
    [8] SINGH D, SHARMA D, SONI S L, et al. A review on feedstocks, production processes, and yield for different generations of biodiesel[J]. Fuel,2020,262:116553. doi: 10.1016/j.fuel.2019.116553
    [9] MONTERIRO M R, KUGELMEIER C L, PINHEIRO R S, et al. Glycerol from biodiesel production: Technological paths for sustainability[J]. Renewable Sustainable Energy Rev,2018,88:109−122. doi: 10.1016/j.rser.2018.02.019
    [10] SUN D, YAMADA Y, SATO S, et al. Glycerol hydrogenolysis into useful C3 chemicals[J]. Appl Catal B: Environ,2016,193:75−92. doi: 10.1016/j.apcatb.2016.04.013
    [11] WU F, JIANG H, ZHU X, et al. Effect of tungsten species on selective hydrogenolysis of glycerol to 1, 3-propanediol[J]. ChemSusChem,2021,14(2):569−581. doi: 10.1002/cssc.202002405
    [12] TORRES S, PALACIO R, LÓPEZ D. Support effect in Co3O4-based catalysts for selective partial oxidation of glycerol to lactic acid[J]. Appl Catal A: Gen,2021,621:118199. doi: 10.1016/j.apcata.2021.118199
    [13] YAN H, SHEN Q, SUN Y, et al. Tailoring facets of α-Mn2O3 microcrystalline catalysts for enhanced selective oxidation of glycerol to glycolic acid[J]. ACS Catal,2021,11(11):6371−6383. doi: 10.1021/acscatal.1c01566
    [14] YAN H, YAO S, ZHAO S, et al. Insight into the basic strength-dependent catalytic performance in aqueous phase oxidation of glycerol to glyceric acid[J]. Chem Eng Sci,2021,230:116191. doi: 10.1016/j.ces.2020.116191
    [15] TAMOŠIĖŪNAS A, GIMŽAUSKAITĖ D, USCILA R, et al. Thermal arc plasma gasification of waste glycerol to syngas[J]. Appl Energy,2019,251:113306. doi: 10.1016/j.apenergy.2019.113306
    [16] HU J, LI J, GU Y, et al. Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2 (phen)/KI[J]. Appl Catal A: Gen,2010,386(1/2):188−193. doi: 10.1016/j.apcata.2010.07.059
    [17] CHRISTY S, NOSCHESE A, LOMELI-RODRIGUEZ M, et al. Recent progress in the synthesis and applications of glycerol carbonate[J]. Curr Opin Green Sustainable Chem,2018,14:99−107. doi: 10.1016/j.cogsc.2018.09.003
    [18] ZHANG P, ZHU M, FAN M, et al. Rare earth-doped calcium-based magnetic catalysts for transesterification of glycerol to glycerol carbonate[J]. J Chin Chem Soc,2019,66(2):164−170. doi: 10.1002/jccs.201800164
    [19] LI Y, LIU J, HE D. Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li-La2O3 catalysts[J]. Appl Catal A: Gen,2018,564:234−242. doi: 10.1016/j.apcata.2018.07.032
    [20] SHUKLA K, SRIVASTAVA V C. Synthesis of organic carbonates from alcoholysis of urea: A review[J]. Catal Rev,2017,59(1):1−43. doi: 10.1080/01614940.2016.1263088
    [21] WU Y, SONG X, CAI F, et al. Synthesis of glycerol carbonate from glycerol and diethyl carbonate over Ce-NiO catalyst: The role of multiphase Ni[J]. J Alloys Compd,2017,720:360−368. doi: 10.1016/j.jallcom.2017.05.292
    [22] ARESTA M, DIBENEDETTO A, NOCITO F, et al. A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions[J]. J Mol Catal A: Chem,2006,257(1/2):149−153. doi: 10.1016/j.molcata.2006.05.021
    [23] PARK C, NGUYEN-PHU H, SHIN E W. Glycerol carbonation with CO2 and La2O2CO3/ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure[J]. Mol Catal,2017,435:99−109. doi: 10.1016/j.mcat.2017.03.025
    [24] OCHOA-GÓMEZ J R, GÓMEZ-JIMÉNEZ-ABERASTURI O, RAMIREZ-LOPEZ C, et al. A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical[J]. Org Process Res Dev,2012,16(3):389−399. doi: 10.1021/op200369v
    [25] SU X, LIN W, CHENG H, et al. Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate[J]. Green Chem,2017,19(7):1775−1781. doi: 10.1039/C7GC00260B
    [26] LI J, WAMG T. Chemical equilibrium of glycerol carbonate synthesis from glycerol[J]. J Chem Thermodyn,2011,43(5):731−736. doi: 10.1016/j.jct.2010.12.013
    [27] VIEVILLE C, YOO J W, PELET S, et al. Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins[J]. Catal Lett,1998,56(4):245−247. doi: 10.1023/A:1019050205502
    [28] DIBENEDETTO A, ANGELINI A, ARESTA M, et al. Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes[J]. Tetrahedron,2011,67(6):1308−1313. doi: 10.1016/j.tet.2010.11.070
    [29] GEORGE J, PATEL Y, PILLAI S M, et al. Methanol assisted selective formation of 1, 2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst[J]. J Mol Catal A: Chem,2009,304(1/2):1−7. doi: 10.1016/j.molcata.2009.01.010
    [30] LI H, JIAO X, LI L, et al. Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M=Li, Mg and Zr) hydrotalcites[J]. Catal Sci Technol,2015,5(2):989−1005. doi: 10.1039/C4CY01237B
    [31] LIU Z, LI B, QIAO F, et al. Catalytic performance of Li/Mg composites for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate[J]. ACS Omega,2022,7(6):5032−5038. doi: 10.1021/acsomega.1c05968
    [32] DOSUNA-RODRÍGUEZ I, GAIGNEAUX E M. Glycerol acetylation catalysed by ion exchange resins[J]. Catal Today,2012,195(1):14−21. doi: 10.1016/j.cattod.2012.04.031
    [33] LIU J, LI Y, ZHANG J, et al. Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters[J]. Appl Catal A: Gen,2016,513:9−18. doi: 10.1016/j.apcata.2015.12.030
    [34] MA J, SONG J, LIU H, et al. One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent[J]. Green Chem,2012,14(6):1743−1748. doi: 10.1039/c2gc35150a
    [35] AKHAVAN O, AZIMIRAD R, SAFA S, et al. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts[J]. J Mater Chem A,2011,21(26):9634−9640. doi: 10.1039/c0jm04364h
    [36] BENJARAM M R, ATAULLAH K. Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports[J]. Catal Rev,2005,47:257−296. doi: 10.1081/CR-200057488
    [37] LIU G, LIU J, LI W, et al. Aerobic oxidation of alcohols over Ru-Mn-Ce and Ru-Co-Ce catalysts: The effect of calcination temperature[J]. Appl Catal A: Gen,2017,535:77−84. doi: 10.1016/j.apcata.2017.02.006
    [38] GANDHE A R, REBELLO J S, FIGUEIREDO J L, et al. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate[J]. Appl Catal B: Environ,2007,72(1/2):129−135. doi: 10.1016/j.apcatb.2006.10.017
    [39] KONDAWAR S E, POTDAR A S, RODE C V. Solvent-free carbonylation of glycerol with urea using metal loaded MCM-41 catalysts[J]. RSC Adv,2015,5(21):16452−16460. doi: 10.1039/C4RA11590B
    [40] ZHAO M, YAN H, LU R, et al. Insight into the selective oxidation mechanism of glycerol to 1, 3-dihydroxyacetone over AuCu-ZnO interface[J]. AIChE,2022,68(11):e17833. doi: 10.1002/aic.17833
    [41] LI D, WANG Z, HUANG J, et al. Ultrafine CeO2 nanodots embedded in porous ZrO2 for efficient and sustainable chlorine recycle through hydrochloric acid catalytic oxidation[J]. ChemistrySelect,2020,5(40):12442−12449. doi: 10.1002/slct.202003184
    [42] LIU B, LI C, ZHANG G, et al. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods[J]. ACS Catal,2018,8(11):10446−10456. doi: 10.1021/acscatal.8b00415
    [43] CLIMENT M J, CORMA A, DE FRUTOS P, et al. Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs[J]. J Catal,2010,269(1):140−149. doi: 10.1016/j.jcat.2009.11.001
    [44] LIU P, DERCHI M, HENSEN E J M. Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis[J]. Appl Catal B: Environ,2014,144:135−143. doi: 10.1016/j.apcatb.2013.07.010
    [45] ZHAO H, FANG K, ZHOU J, et al. Direct synthesis of methyl formate from syngas on Cu-Mn mixed oxide catalyst[J]. Int J Hydrog Energy,2016,41(21):8819−8828. doi: 10.1016/j.ijhydene.2016.03.149
    [46] GAO Z, ZHOU Z, WANG M, et al. Highly dispersed Pd anchored on heteropolyacid modified ZrO2 for high efficient hydrodeoxygenation of lignin-derivatives[J]. Fuel,2023,334:126768. doi: 10.1016/j.fuel.2022.126768
    [47] MEGHA, MONDAL K, GHANTY T K, et al. Adsorption and activation of CO2 on small-sized Cu-Zr bimetallic clusters[J]. J Phys Chem A,2021,125(12):2558−2572. doi: 10.1021/acs.jpca.1c00751
    [48] HONDA M, TAMURA M, NAKAO K, et al. Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine[J]. ACS Catal,2014,4(6):1893−1896. doi: 10.1021/cs500301d
    [49] MA J, LIU J, ZHANG Z, et al. Mechanisms of ethylene glycol carbonylation with carbon dioxide[J]. Comput Theor Chem,2012,992:103−109. doi: 10.1016/j.comptc.2012.05.010
    [50] DI COSIMO J I, DIEZ V K, XU M, et al. Structure and surface and catalytic properties of Mg-Al basic oxides[J]. J Catal,1998,178(2):499−510. doi: 10.1006/jcat.1998.2161
    [51] ZHANG J, HE D. Surface properties of Cu/La2O3 and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide[J]. J Colloid Interface Sci,2014,419:31−38. doi: 10.1016/j.jcis.2013.12.049
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  64
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-09-04
  • 录用日期:  2023-09-05
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回