留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe基催化剂的酸性调控及其对加氢脱硫反应路径选择性的影响

李国省 李昆鸿 李晓涵 尹馨蕊 邵嘉欣 郭荣 任申勇 郭巧霞 申宝剑

李国省, 李昆鸿, 李晓涵, 尹馨蕊, 邵嘉欣, 郭荣, 任申勇, 郭巧霞, 申宝剑. Fe基催化剂的酸性调控及其对加氢脱硫反应路径选择性的影响[J]. 燃料化学学报(中英文), 2024, 52(2): 234-248. doi: 10.1016/S1872-5813(23)60389-5
引用本文: 李国省, 李昆鸿, 李晓涵, 尹馨蕊, 邵嘉欣, 郭荣, 任申勇, 郭巧霞, 申宝剑. Fe基催化剂的酸性调控及其对加氢脱硫反应路径选择性的影响[J]. 燃料化学学报(中英文), 2024, 52(2): 234-248. doi: 10.1016/S1872-5813(23)60389-5
LI Guosheng, LI Kunhong, LI Xiaohan, YIN Xinrui, SHAO Jiaxin, GUO Rong, REN Shenyong, GUO Qiaoxia, SHEN Baojian. Acidity regulation of Fe-based catalysts and its effect on the selectivity of HDS reaction pathways[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 234-248. doi: 10.1016/S1872-5813(23)60389-5
Citation: LI Guosheng, LI Kunhong, LI Xiaohan, YIN Xinrui, SHAO Jiaxin, GUO Rong, REN Shenyong, GUO Qiaoxia, SHEN Baojian. Acidity regulation of Fe-based catalysts and its effect on the selectivity of HDS reaction pathways[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 234-248. doi: 10.1016/S1872-5813(23)60389-5

Fe基催化剂的酸性调控及其对加氢脱硫反应路径选择性的影响

doi: 10.1016/S1872-5813(23)60389-5
基金项目: 国家自然科学基金创新研究群体科学基金(22021004)和国家自然科学基金(21776304)资助
详细信息
    通讯作者:

    Tel: 010-89733369, Fax: 010-89733369, E-mail: baojian@cup.edu.cn

  • 中图分类号: O643.38

Acidity regulation of Fe-based catalysts and its effect on the selectivity of HDS reaction pathways

Funds: The project was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (22021004) and National Natural Science Foundation of China (21776304).
  • 摘要: 以Fe作为主活性金属、Zn作为助活性金属,制备了Y型分子筛改性的Fe基加氢脱硫(HDS)催化剂。采用低温氮气物理吸附、X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、氨气程序升温脱附(NH3-TPD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和吡啶红外(Py-IR)等表征方法对改性前后Fe基催化剂的形貌、孔结构、分散性、还原性、电子缺陷结构以及酸性等变化进行了研究,并使用固定床反应器对Fe基催化剂的HDS性能进行了评价。结果表明,Y型分子筛的引入提供了Brønsted(B)酸中心,使得Fe基催化剂的脱硫率提高了10.7%−34.1%。同时,B酸中心提高了催化剂的直接脱硫(DDS)反应路径的选择性。此外,B酸中心在促进DDS反应路径选择性增加的同时,抑制了预加氢脱硫(HYD)反应路径中四氢二苯并噻吩(THDBT)和六氢二苯并噻吩(HHDBT)更进一步的深度加氢,从而在保证脱硫率提升的同时又降低了氢耗。其根本原因可能是Y型分子筛的引入增强了催化剂的酸性,特别是B酸中心和活性金属之间的相互作用促进了电子转移,从而调节了Fe物种的电子缺陷结构,进而提升了催化剂的HDS性能。
  • FIG. 2931.  FIG. 2931.

    FIG. 2931.  FIG. 2931.

    图  1  载体和氧化态Fe基催化剂的XRD谱图

    Figure  1  XRD patterns of supports and oxide Fe-based catalysts

    图  2  硫化态Fe基催化剂的XRD谱图

    Figure  2  XRD patterns of sulfide Fe-based catalysts

    图  3  载体以及Fe基催化剂的(a)吸附-脱附等温曲线和(b)孔径分布

    Figure  3  (a) N2 physical adsorption-desorption isotherms and (b) pore size distribution of supports and oxide Fe-based catalysts

    图  4  载体和Fe基催化剂的SEM图

    Figure  4  SEM images of supports and oxide Fe-based catalysts

    图  5  Fe基催化剂的EDS-Mapping图

    Figure  5  EDS-Mapping images of oxide Fe-based catalysts

    图  6  Fe基催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of oxide Fe-based catalysts

    图  7  载体和Fe基催化剂的NH3-TPD谱图

    Figure  7  NH3-TPD profiles of supports and oxide Fe-based catalysts

    图  8  载体和Fe基催化剂在(a)150 ℃(总酸)和(b)300 ℃(强酸)下的Py-IR谱图

    Figure  8  Py-IR spectra of supports and oxide Fe-based catalysts with adsorbed pyridine at (a) 150 ℃ (total acid sites) and (b) 300 ℃ (strong acid sites)

    图  9  根据Fe 2p3/2电子轨道的XPS得出该系列硫化态Fe基催化剂的硫化度

    Figure  9  SD of the sulfide Fe-based catalysts acquired from the XPS data of Fe 2p3/2

    图  10  不同硫化态Fe基催化剂Fe 3p轨道的XPS谱图

    Figure  10  XPS spectra of Fe 3p for sulfide Fe-based catalysts

    图  11  Fe基催化剂催化DBT的HDS性能

    Figure  11  Sulfur removal rate of DBT over Fe-based catalysts

    图  12  (a)未改性Fe基催化剂和(b)改性后Fe基催化剂催化DBT的HDS反应路径

    Figure  12  Reaction pathway of DBT over (a) unmodified Fe-based catalyst and (b) modified Fe-based catalyst

    图  13  Fe基催化剂的酸性位点和DDS选择性之间的关系

    Figure  13  Relationship between the DDS selectivity and acid site for Fe-based catalysts

    表  1  载体以及Fe基催化剂的织构性质

    Table  1  Textural properties of supports and Fe-based catalysts

    Sample Surface area/(m2·g−1) Pore volume/(cm3·g−1)
    BETaexternalmicroporebtotalcmesoporemicroporeb
    USY58650977 0.3890.1400.249
    DY578533450.3640.1030.261
    GA336296401.1501.1330.017
    UGA3532321210.9870.9290.058
    DGA3662201460.9750.9050.070
    FZ@GA225200250.7370.7270.010
    FZ@UGA2701591110.7240.6710.053
    FZ@DGA248154940.7140.6690.045
    a: BET method; b: t-plot method; c: Volume adsorbed at p/p0 =0.99.
    下载: 导出CSV

    表  2  Fe基催化剂的H2-TPR谱图对应的还原温度

    Table  2  Reduction temperature corresponding to peak of oxide Fe-based catalysts from H2-TPR

    SampleTemperature corresponding to reduction peak/℃
    R1R2R3R4
    FZ@GA307390463540
    FZ@UGA279365443585
    FZ@DGA271371448542
    下载: 导出CSV

    表  3  由Py-IR测得的改性前后载体和Fe基催化剂表面酸中心的类型和含量

    Table  3  Concentrations of B acid sites (1545 cm−1) and L acid sites (1455 cm−1) acquired by Py-IR spectra

    SampleWeak acid sites/(μmol·g−1) Strong acid sites/(μmol·g−1)Total/(μmol·g−1)
    LBLB
    USY189.9105.3 133.0101.0529.1
    DY171.8108.7258.2118.3657.0
    GA198.00.077.60.0275.7
    UGA150.724.967.246.4289.2
    DGA148.733.9115.198.0395.7
    FZ@GA159.50.0123.90.0283.3
    FZ@UGA269.513.3141.62.1426.6
    FZ@DGA224.117.0208.26.2455.4
    FZ@USY203.990.4164.045.2503.5
    FZ@DY226.2136.9191.763.3618.1
    下载: 导出CSV

    表  4  硫化态Fe基催化剂中Fe物种的组成

    Table  4  Composition of Fe species of sulfide Fe-based catalysts from XPS data

    SampleConcentration of Fe species/%SD/%
    FeSFe(III)-OFe(II)-OFeZnSFeS2
    FZ@GA17.717.322.319.623.060.4
    FZ@UGA23.77.822.428.717.469.8
    FZ@DGA22.46.024.029.618.070.0
    下载: 导出CSV

    表  5  Fe基催化剂在催化DBT的HDS过程中的产物分布、反应选择性和反应速率常数

    Table  5  Product distributions, pathway selectivity and kHDS of HDS reaction for DBT over Fe-based catalysts

    SampleFeZn@GAFeZn@UGAFeZn@DGA
    CPMCY9.0100
    2-MCPB3.1900
    Benzyl-CP16.744.425.32
    BCH6.580.970.76
    CHB27.633.122.37
    BP22.2062.9668.21
    THDBT+HHDBT14.6526.7523.33
    kHDS ( × 10−4 mol/(g·h))1.052.022.67
    SDDS22.2062.9668.21
    SHYD77.837.0431.79
    DDS/HYD0.291.702.15
    *: The data was determined with approximately 30% of the HDS rate via changing the WHSV at 360 ℃.
    下载: 导出CSV
  • [1] SRIVASTAVA V C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. RSC Adv,2012,2(3):759−783. doi: 10.1039/C1RA00309G
    [2] 尹海亮, 刘新亮, 周同娜, 等. NiMo催化剂载体中纳米HY分子筛和氧化铝混合方式对柴油加氢脱硫性能的影响[J]. 燃料化学学报,2018,46(8):950−956. doi: 10.1016/S1872-5813(18)30038-0

    YIN Hailiang, LIU Xinliang, ZHOU Tongna, et al. Effect of preparation method of nanosized zeolite HY-Al2O3 composite as NiMo catalyst support on diesel HDS[J]. J Fuel Chem Technol,2018,46(8):950−956. doi: 10.1016/S1872-5813(18)30038-0
    [3] 张亮亮, 汪镭, 陈霄, 等. Co2Si@C催化剂的合成及其加氢脱硫性能[J]. 分子催化,2020,34(2):116−124.

    ZHANG Liangliang, WANG Lei, CHEN Xiao, et al. Synthesis of Co2Si@C and its catalytic performance in the hydrodesulphurization of dibenzothiophene[J]. Mol Catal,2020,34(2):116−124.
    [4] ASIF M, MUNEER T. Energy supply, its demand and security issues for developed and emerging economies[J]. Renewablet Sustainable Energy Rev,2007,11(7):1388−1413. doi: 10.1016/j.rser.2005.12.004
    [5] TANIMU A, ALHOOSHANI K. Advanced hydrodesulfurization catalysts: A review of design and synthesis[J]. Energy Fuels,2019,33(4):2810−2838. doi: 10.1021/acs.energyfuels.9b00354
    [6] WENG X, CAO L, ZHANG G, et al. Ultradeep hydrodesulfurization of diesel: Mechanisms, catalyst design strategies, and challenges[J]. Ind Eng Chem Res,2020,59(49):21261−21274. doi: 10.1021/acs.iecr.0c04049
    [7] 于志庆, 黄文斌, 王晓晗, 等. B 掺杂Al2O3@C 负载CoMo 型加氢脱硫催化剂性能[J]. 化工进展,2023,42(7):3550−3560.

    YU Zhiqing, HUANG Wenbin, WANG Xiaohan, et al. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance[J]. Chem Ind Eng Prog,2023,42(7):3550−3560.
    [8] 刘娟, 李文英, 冯杰, 等. Ni对MoS2基催化剂活性相及加氢脱氮脱硫性能的影响[J]. 燃料化学学报,2021,49(10):1513−1521.

    LIU Juan, LI Wenying, FENG Jie, et al. Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts[J]. J Fuel Chem Technol,2021,49(10):1513−1521.
    [9] 孙嫚, 夏少青, 戴薇薇, 等. M-PHG技术在国Ⅵ汽油质量升级改造项目中的应用[J]. 中外能源,2022,27(4):67−70.

    SUN Man, XIA Shaoqing, DAI Weiwei, et al. Application of M-PHG technology in national Ⅵ gasoline quality upgrading project[J]. Sino Global Energy,2022,27(4):67−70.
    [10] 孟欣欣, 邱泽刚, 郭兴梅, 等. 不同金属含量Ni-W催化剂的煤焦油加氢脱硫脱氮性能研究[J]. 燃料化学学报,2016,44(5):570−578.

    MENG Xinxin, QIU Zegang, GUO Xingmei, et al. Hydrodenitrogenation and hydrodesulfurization of coal tar on Ni-W catalysts with different metal loadings[J]. J Fuel Chem Technol,2016,44(5):570−578.
    [11] 孙进, 郭蓉, 陈晓贞, 等. 助剂Co对加氢处理催化剂性能的影响[J]. 石油炼制与化工,2023,54(6):32−38. doi: 10.3969/j.issn.1005-2399.2023.06.007

    SUN Jin, GUO Rong, CHEN Xiaozhen, et al. Effect of promoter cobalt on the performance of hydrotreating catalysts[J]. Pet Process Petrochem,2023,54(6):32−38. doi: 10.3969/j.issn.1005-2399.2023.06.007
    [12] TOPSØE H. The role of Co-Mo-S type structures in hydrotreating catalysts[J]. Appl Catal A: Gen,2007,322:3−8. doi: 10.1016/j.apcata.2007.01.002
    [13] TUXEN A K, FÜCHTBAUER H G, TEMEL B, et al. Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co-Mo-S hydrotreating catalysts[J]. J Catal,2012,295:146−154. doi: 10.1016/j.jcat.2012.08.004
    [14] VÍT Z, GULKOVÁ D, KALUŽA L, et al. Pd-Pt catalysts on mesoporous SiO2-Al2O3 with superior activity for HDS of 4, 6-dimethyldibenzothiophene: Effect of metal loading and support composition[J]. Appl Catal B: Environ,2015,179:44−53. doi: 10.1016/j.apcatb.2015.04.057
    [15] GALINDO-ORTEGA Y, INFANTES-MOLINA A, HUIRACHE-ACUÑA R, et al. Active ruthenium phosphide as selective sulfur removal catalyst of gasoline model compounds[J]. Fuel Process Technol,2020,208:106507. doi: 10.1016/j.fuproc.2020.106507
    [16] MAJODINA S, TSHENTU Z. R, OGUNLAJA A S. Effect of adding chelating ligands on the catalytic performance of Rh-promoted MoS2 in the hydrodesulfurization of dibenzothiophene[J]. Catal,2021,11(11):1398. doi: 10.3390/catal11111398
    [17] INFANTES-MOLINA A, ROMERO-PÉREZ A, FINOCCHIO E, et al. HDS and HDN on SBA-supported RuS2 catalysts promoted by Pt and Ir[J]. J Catal,2013,305:101−117. doi: 10.1016/j.jcat.2013.05.001
    [18] 杨晓东, 关旭, 高善彬, 等. 载体性质对Pd催化剂加氢脱硫性能的影响[J]. 燃料化学学报,2017,45(8):980−985.

    YANG Xiaodong, GUAN Xu, GAO Shanbin, et al. Effect of support properties on the performance of supported Pd catalysts in hydrodesulfurization[J]. J Fuel Chem Technol,2017,45(8):980−985.
    [19] SCHACHT P, HERNÁNDEZ G, CEDEÑO L, et al. Hydrodesulfurization activity of CoMo catalysts supported on stabilized TiO2[J]. Energy Fuels,2003,17(1):81−86. doi: 10.1021/ef020144u
    [20] HUBAUT R. Vanadium-based sulfides as hydrotreating catalysts[J]. Appl Catal A: Gen,2007,322:121−128. doi: 10.1016/j.apcata.2007.01.020
    [21] PUELLO-POLO E, GUTIÉRREZ-ALEJANDRE A, GONZÁLEZ G, et al. Relationship between sulfidation and HDS catalytic activity of activated carbon supported Mo, Fe-Mo, Co-Mo and Ni-Mo carbides[J]. Catal Lett,2010,135(3/4):212−218. doi: 10.1007/s10562-010-0303-6
    [22] MÉNDEZ F J, FRANCO-LÓPEZ O E, DÍAZ G, et al. On the role of niobium in nanostructured Mo/Nb-MCM-41 and NiMo/Nb-MCM-41 catalysts for hydrodesulfurization of dibenzothiophene[J]. Fuel,2020,280:118550. doi: 10.1016/j.fuel.2020.118550
    [23] XIE J, LU H, SHU G, et al. The relationship between the microstructures and catalytic behaviors of iron-oxygen precursors during direct coal liquefaction[J]. Chin J Catal,2018,39(4):857−866. doi: 10.1016/S1872-2067(17)62919-X
    [24] ANDERSON J S, RITTLE J, PETERS J C. Catalytic conversion of nitrogen to ammonia by an iron model complex[J]. Nature,2013,501(7465):84−87. doi: 10.1038/nature12435
    [25] VAN STEEN E, CLAEYS M. Fischer-Tropsch catalysts for the biomass to liquid process[J]. Chem Eng Technol,2008,31(5):655−666. doi: 10.1002/ceat.200800067
    [26] 刘化章, 李小年. Fe1−xO 基氨合成催化剂高活性机理初探[J]. 催化学报,2005,26(1):79−86.

    LIU Huazhang, LI Xiaonian. Study on mechanism of high activity of Fe1−xO-based catalyst for ammonia synthesis[J]. Chin J Catal,2005,26(1):79−86.
    [27] LI H, LIU J, LI J, et al. Promotion of the inactive iron sulfide to an efficient hydrodesulfurization catalyst[J]. ACS Catal,2017,7(7):4805−4816. doi: 10.1021/acscatal.6b03495
    [28] LIU P, LI Z, LIU X, et al. Steaming drived chemical interactions of ZnClx with Y zeolite framework, its regulation to dealumination/silicon-healing as well as enhanced availability of Brønsted acidity[J]. ACS Catal,2020,10(16):9197−9214. doi: 10.1021/acscatal.0c01181
    [29] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−354. doi: 10.1006/jcat.1993.1145
    [30] LIU X, LIU J, LI L, et al. Hydrodesulfurization of dibenzothiophene on TiO2–x modified Fe-based catalysts: Electron transfer behavior between TiO2–x and Fe species[J]. ACS Catal,2020,10:9019−9033. doi: 10.1021/acscatal.0c01068
    [31] PEÑA L, VALENCIA D, KLIMOVA T. CoMo/SBA-15 catalysts prepared with EDTA and citric acid and their performance in hydrodesulfurization of dibenzothiophene[J]. Appl Catal B: Environ,2014,147:879−887. doi: 10.1016/j.apcatb.2013.10.019
    [32] HEINRICH F, SCHMIDT C, LÖFFLER E, et al. Fe-ZSM-5 catalysts for the selective reduction of NO by isobutane-The problem of the active sites[J]. J Catal,2002,212(2):157−172. doi: 10.1006/jcat.2002.3775
    [33] LIANG M, KANG W, XIE K. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. J Nat Gas Chem,2009,18(1):110−113. doi: 10.1016/S1003-9953(08)60073-0
    [34] WANG J, WANG Y, XIE S, et al. Partial hydrogenation of benzene to cyclohexene on a Ru-Zn/m-ZrO2 nanocomposite catalyst[J]. Appl Catal A: Gen,2004,272(1):29−36.
    [35] VRINAT M L, GACHET C G, DE MOURGUES L. Catalytic hydrodesulfurization of dibenzothiophene over Y type zeolites[C]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 1980: 219−225.
    [36] TANG H, LI Q, SONG Z, et al. Enhancement of desulfurization performance of nickel-based adsorbents by hydrogen reduction pretreatment[J]. Catal Commun,2011,12(12):1079−1083. doi: 10.1016/j.catcom.2011.03.022
    [37] ZHANG X, ZHANG B, CHEN Y, et al. Silica improved formation of Fe(III)-S and electron-deficient effect in Fe-based catalysts to improve hydrodesulfurization[J]. Fuel,2022,307:121787. doi: 10.1016/j.fuel.2021.121787
    [38] HAN W, NIE H, LONG X, et al. Effects of the support Brønsted acidity on the hydrodesulfurization and hydrodenitrogention activity of sulfided NiMo/Al2O3 catalysts[J]. Catal Today,2017,292:58−66. doi: 10.1016/j.cattod.2016.11.049
    [39] JIAO J, FU J, WEI Y, et al. Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal-support interaction[J]. J Catal,2017,356:269−282.
    [40] FAN Y, XIAO H, SHI G, et al. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts[J]. J Catal,2011,279(1):27−35. doi: 10.1016/j.jcat.2010.12.014
    [41] HESSOU E P, JABRAOUI H, KHALIL I, et al. Ab initio screening of zeolite Y formulations for efficient adsorption of thiophene in presence of benzene[J]. Appl Surf Sci,2021,541:148515. doi: 10.1016/j.apsusc.2020.148515
    [42] XIA B, CAO L, LUO K, et al. Effects of the active phase of CoMo/γ-Al2O3 catalysts modified using cerium and phosphorus on the HDS performance for FCC gasoline[J]. Energy Fuels,2019,33(5):4462−4473. doi: 10.1021/acs.energyfuels.8b04332
    [43] HAN W, NIE H, LONG X, et al. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. J Catal,2016,339:135−142. doi: 10.1016/j.jcat.2016.04.005
    [44] WEI W, ZHANG X, LIU X, et al. Tuning effect of the zeolite Brønsted acidity on the FeZn bimetallic hydrodesulfurization catalyst[J]. Energy Fuels,2022,36(1):527−538. doi: 10.1021/acs.energyfuels.1c03142
    [45] MGUNI L L, YAO Y, NKOMZWAYO T, et al. Desulphurization of diesel fuels using intermediate Lewis acids loaded on activated charcoal and alumina[J]. Chem Eng Commun,2019,206(5):572−580. doi: 10.1080/00986445.2018.1511983
    [46] VILLARROEL M, BAEZA P, ESCALONA N, et al. MD//Mo and MD//W [MD=Mn, Fe, Co, Ni, Cu and Zn] promotion via spillover hydrogen in hydrodesulfurization[J]. Appl Catal A: Gen,2008,345(2):152−157. doi: 10.1016/j.apcata.2008.04.033
    [47] COSTA C S, THI H D, VAN GEEM K M, et al. Assessment of acidity and the zeolite porous structure on hydrocracking of HDPE[J]. Sustainable Energy Fuels,2022,6:3611−3625.
    [48] SUN H, SUN H, ZHANG X, et al. Effect of divalent tin on the SnSAPO-5 molecular sieve and its modulation to alumina support to form a highly efficient NiW catalyst for deep hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. ACS Catal,2019,9(8):6613−6623. doi: 10.1021/acscatal.9b01668
    [49] LIU X, LIU J, LI L, et al. Preparation of electron-rich Fe-based catalyst via electronic structure regulation and its promotion to hydrodesulfurization of dibenzothiophene[J]. Appl Catal B: Environ,2020,269(269):118779.
    [50] YUE S. , WU B., CAO Z., et al. Cobalt promoted molybdenum carbide supported on γ-alumina as an efficient catalyst for hydrodesulfurization of dibenzothiophene[J]. J Cleaner Prod,2022,371:133642. doi: 10.1016/j.jclepro.2022.133642
    [51] CHEN W, NIE H, LI D, et al. Effect of Mg addition on the structure and performance of sulfide Mo/Al2O3 in HDS and HDN reaction[J]. J Catal,2016,344:420−433. doi: 10.1016/j.jcat.2016.08.025
    [52] SHAFIQ I, SHAFIQUE S, AKHTER P, et al. Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: A technical review[J]. Catal Rev,2022,64(1):1−86. doi: 10.1080/01614940.2020.1780824
    [53] LIU X, LI L, SUN H, et al. NiW catalyst modified with C12A7-H- and its promotion to hydrogenation selectivity of hydrodesulfurization[J]. Fuel,2021,290:120037. doi: 10.1016/j.fuel.2020.120037
    [54] LI L, WANG M, HUANG L, et al. Electron-donating-accepting behavior between nitrogen-doped carbon materials and Fe species and its promotion for DBT hydrodesulfurization[J]. Appl Catal B: Environ,2019,254:360−370. doi: 10.1016/j.apcatb.2019.05.011
    [55] CAO Z, ZHANG X, GUO R, et al. Synergistic effect of acidity and active phases for NiMo catalysts on dibenzothiophene hydrodesulfurization performance[J]. Chem Eng J,2020,400:125886. doi: 10.1016/j.cej.2020.125886
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  55
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 修回日期:  2023-10-09
  • 录用日期:  2023-10-10
  • 网络出版日期:  2023-10-31
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回