留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on the pyrolysis mechanism of the lignin dimer model compound catalyzed by alkaline earth metal ions Ca2+ and Mg2+

JIANG Xiaoyan LI Yiming TANG Li DU Xiaojiao DAI Lanhua HU Bin

蒋晓燕, 李一鸣, 汤溧, 杜晓娇, 代兰花, 胡斌. 碱土金属离子Ca2+和Mg2+催化木质素二聚体热解过程的机理研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60441-X
引用本文: 蒋晓燕, 李一鸣, 汤溧, 杜晓娇, 代兰花, 胡斌. 碱土金属离子Ca2+和Mg2+催化木质素二聚体热解过程的机理研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60441-X
JIANG Xiaoyan, LI Yiming, TANG Li, DU Xiaojiao, DAI Lanhua, HU Bin. Theoretical study on the pyrolysis mechanism of the lignin dimer model compound catalyzed by alkaline earth metal ions Ca2+ and Mg2+[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60441-X
Citation: JIANG Xiaoyan, LI Yiming, TANG Li, DU Xiaojiao, DAI Lanhua, HU Bin. Theoretical study on the pyrolysis mechanism of the lignin dimer model compound catalyzed by alkaline earth metal ions Ca2+ and Mg2+[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60441-X

碱土金属离子Ca2+和Mg2+催化木质素二聚体热解过程的机理研究

doi: 10.1016/S1872-5813(24)60441-X
详细信息
  • 中图分类号: TK6

Theoretical study on the pyrolysis mechanism of the lignin dimer model compound catalyzed by alkaline earth metal ions Ca2+ and Mg2+

Funds: The project was supported by National Natural Science Foundation of China (52206232), Jiangsu Agricultural Science and Technology Innovation Fund (CX(23)3049) and Key University Science Research Project of Jiangsu province (21KJA610001).
More Information
  • 摘要: 本研究采用密度泛函理论方法,对碱土金属离子(Ca2+、Mg2+)作用下的β-O-4型木质素二聚体模型化合物(2-[2-(4-甲氧基苯基)乙氧基]-苯甲醚,mc)的热解反应路径进行了理论计算。计算结果表明,Ca2+和Mg2+会与木质素二聚体模型化合物mc的Cβ位氧原子及甲氧基上的氧原子结合形成稳定的复合物,从而影响Cα−Cβ和Cβ−O的键长和热解反应能垒。在热解过程中,Ca2+和Mg2+会促进协同断裂反应的发生,从而促进产物1-甲氧基-4-乙烯基苯、2-甲氧基苯酚和邻苯二酚的生成;抑制Cα−Cβ键和Cβ−O键的均裂反应,从而抑制产物1-乙基-4-甲氧基苯、2-羟基苯甲醛的生成。
  • Figure  1  The β-O-4 type lignin dimer model compound (mc, 1-methoxy-2-(4-methoxyphenethoxy)benzene)[1516]

    Figure  2  The optimized geometric configurations of the lignin dimer model compounds mc, Ca-mc and Mg-mc (unit: nm)

    Figure  3  Subsequent pyrolytic pathways of radical b based on the Cβ–O homolysis mechanism

    Figure  4  Optimized geometric configurations of partial transition states, intermediates, and products in the subsequent pyrolysis pathways of the lignin dimer model compound (unit: nm)

    Figure  5  Subsequent pyrolytic pathways based on concerted decomposition mechanism

    Table  1  Reaction energy barriers for the initial pyrolysis mechanisms of the lignin dimer model compound

    Preliminary pyrolysis mechanism Alkaline earth metal ion Reaction energy barrier/(kJ·mol−1)
    Cα–Cβ homolysis none 266.8
    Ca2+ 346.6
    Mg2+ 387.1
    Cβ–O homolysis none 217.4
    Ca2+ 243.2
    Mg2+ 280.2
    Concerted decomposition none 247.0
    Ca2+ 167.4
    Mg2+ 169.8
    下载: 导出CSV
  • [1] MA L L, TANG Z H, WANG C W, et al. Research status and future development strategy of biomass energy[J]. Bull Chin Acad Sci,2019,34(4):434−442.
    [2] COLLARD F X, BLIN J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[J]. Renewable Sustainable Energy Rev,2014,38:594−608. doi: 10.1016/j.rser.2014.06.013
    [3] YOON J S, LEE Y, RYU J, et al. Production of high carbon number hydrocarbon fuels from a lignin-derived α-O-4 phenolic dimer, benzyl phenyl ether, via isomerization of ether to alcohols on high-surface-area silica-alumina aerogel catalysts[J]. Appl Catal B: Environ,2013,142:668−676.
    [4] GUO Y L, YIN L, LENG E W, et al. Study on the characteristic of β-O-4 lignin polymer model compound fast pyrolysis catalyzed by K+, Ca2+, Fe2+[J]. J Eng Thermophys,2021,42(12):3073−3082.
    [5] WANG B. Study on the influence of alkali/alkaline earth metals on the pyrolysis of hemicellulose and lignin[D]. Wuhan: Huazhong University of Science and Technology, 2021.
    [6] DING Z X , CAI B, CEN K H, et al. The effect of alkali and alkaline earth metals in biomass ash on the bio-oil components derived from biomass fast pyrolysis[J/OL]. J Fuel Chem Technol, doi: 10.19906/j.cnki.JFCT.2023076.
    [7] ZAKZESKI J, BRUIJNINCX P C A, JONGERIUS A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem Rev,2010,110(6):3552−3599. doi: 10.1021/cr900354u
    [8] ELDER T, BESTE A. Density functional theory study of the concerted pyrolysis mechanism for lignin models[J]. Energy Fuels,2014,28(8):5229−5235. doi: 10.1021/ef5013648
    [9] JIANG X Y, LU Q, HU B, et al. Intermolecular interaction mechanism of lignin pyrolysis: A joint theoretical and experimental study[J]. Fuel,2018,215:386−394. doi: 10.1016/j.fuel.2017.11.084
    [10] JIANG X Y, WANG W L, HU B. Formation mechanism of methane during lignin pyrolysis: A theoretical study[J]. J Energy Inst,2022,100:237−244. doi: 10.1016/j.joei.2021.11.010
    [11] HU B, XIE W L, LI Y, et al. Hydroxyl-assisted hydrogen transfer interaction in lignin pyrolysis: An extended concerted interaction mechanism[J]. Energy Fuels,2021,35(16):13170−13180. doi: 10.1021/acs.energyfuels.1c01606
    [12] HU B, ZHANG B, XIE W L, et al. Recent progress in quantum chemistry modeling on the pyrolysis mechanisms of lignocellulosic biomass[J]. Energy Fuels,2020,34(9):10384−10440. doi: 10.1021/acs.energyfuels.0c01948
    [13] WANG R, GAO M Y, CAO J P. Effects of alkali/alkaline earth metals on fast pyrolysis of pine sawdust[J]. Chin J Appl Chem,2022,39(2):289−297.
    [14] JEONG K, JEONG H J, LEE G, et al. Catalytic effect of alkali and alkaline earth metals in the lignin pyrolysis: A density functional theory study[J]. Energy Fuels,2020,34(8):9734−9740. doi: 10.1021/acs.energyfuels.0c01897
    [15] JIANG X Y, LU Q, HU B, et al. Effects of alkali metals on pyrolysis mechanism of lignin dimer[J]. J Eng Thermophys,2017,38(5):1117−1121.
    [16] ZHANG J J, JIANG X Y, YE X N, et al. Pyrolysis mechanism of a β-O-4 type lignin dimer model compound[J]. J Therm Anal Calorim,2016,123(1):501−510. doi: 10.1007/s10973-015-4944-y
    [17] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Revision D. 01, Gaussian, Inc. , Wallingford CT, 2013.
    [18] JIANG X Y, WANG W L, BIAN W B, et al. Formation mechanism of methane and its effect on the lignin pyrolysis process[J]. J. Mol. Sci.,2023,39(2):111−117.
    [19] KIM K H, JEONG K, KIM S S, et al. Kinetic understanding of the effect of Na and Mg on pyrolytic behavior of lignin using a distributed activation energy model and density functional theory modeling[J]. Green Chem.,2019,21(S):1099−1107.
    [20] TRAN Q K, LY H V, HWANG H T, et al. Study on pyrolysis of organosolv lignin impregnated with alkali and alkaline earth metals: Kinetics, thermodynamics, and product characterization[J]. Fuel,2022,329:1−14.
    [21] JIANG X Y, LU Q, HU B, et al. A comprehensive study on pyrolysis mechanism of substituted β-O-4 type lignin dimers[J]. Int J Mol Sci,2017,18(11):2364−2377. doi: 10.3390/ijms18112364
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-02-04
  • 录用日期:  2024-02-26
  • 网络出版日期:  2024-03-30

目录

    /

    返回文章
    返回